論文の概要: DRAPER: Towards a Robust Robot Deployment and Reliable Evaluation for Quasi-Static Pick-and-Place Cloth-Shaping Neural Controllers
- arxiv url: http://arxiv.org/abs/2409.15159v2
- Date: Fri, 14 Mar 2025 23:15:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:56:46.402724
- Title: DRAPER: Towards a Robust Robot Deployment and Reliable Evaluation for Quasi-Static Pick-and-Place Cloth-Shaping Neural Controllers
- Title(参考訳): DRAPER: ロボットのロバスト展開と準静的ピック・アンド・パス整形ニューラルコントローラの信頼性評価
- Authors: Halid Abdulrahim Kadi, Jose Alex Chandy, Luis Figueredo, Kasim Terzić, Praminda Caleb-Solly,
- Abstract要約: 本研究では、フラット化タスクと折り畳みタスクにおいて、異なるシミュレーション訓練されたニューラルコントローラの信頼性の高い実世界比較を示す。
我々は、これらのニューラルコントローラの真の能力を確実に反映した、この包括的な研究を可能にするために、DRAPERフレームワークを導入する。
- 参考スコア(独自算出の注目度): 2.720296126199296
- License:
- Abstract: Comparing robotic cloth-manipulation systems in a real-world setup is challenging. The fidelity gap between simulation-trained cloth neural controllers and real-world operation hinders the reliable deployment of these methods in physical trials. Inconsistent experimental setups and hardware limitations among different approaches obstruct objective evaluations. This study demonstrates a reliable real-world comparison of different simulation-trained neural controllers on both flattening and folding tasks with different types of fabrics varying in material, size, and colour. We introduce the DRAPER framework to enable this comprehensive study, which reliably reflects the true capabilities of these neural controllers. It specifically addresses real-world grasping errors, such as misgrasping and multilayer grasping, through real-world adaptations of the simulation environment to provide data trajectories that closely reflect real-world grasping scenarios. It also employs a special set of vision processing techniques to close the simulation-to-reality gap in the perception. Furthermore, it achieves robust grasping by adopting a tweezer-extended gripper and a grasping procedure. We demonstrate DRAPER's generalisability across different deep-learning methods and robotic platforms, offering valuable insights to the cloth manipulation research community.
- Abstract(参考訳): ロボットの布の操作システムを現実世界で比較することは困難である。
シミュレーショントレーニングされた布のニューラルコントローラと実世界の操作の間の忠実さのギャップは、これらの手法の物理的な試行において信頼性の高い展開を妨げる。
異なるアプローチ間の不整合な実験設定とハードウェア制限は、客観的評価を妨げる。
本研究は, 材料, サイズ, 色によって異なる種類の布地を用いて, 平坦化作業と折り畳み作業の両方において, 異なるシミュレーション訓練されたニューラルコントローラの信頼性の高い実世界比較を行った。
我々は、これらのニューラルコントローラの真の能力を確実に反映した、この包括的な研究を可能にするために、DRAPERフレームワークを導入する。
シミュレーション環境の現実的な適応を通じて、誤認識や多層把握などの実世界の把握エラーに対処し、実世界の把握シナリオを深く反映したデータトラジェクトリを提供する。
また、知覚のシミュレーションと現実のギャップを埋めるために、特殊な視覚処理技術も採用している。
さらに、ツイーザー延長グリップと把持手順を採用することにより、堅牢な把持を実現する。
我々は、DRAPERが様々なディープラーニング手法やロボットプラットフォームにまたがる汎用性を実証し、布地操作研究コミュニティに貴重な洞察を提供する。
関連論文リスト
- Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
私たちは世界モデルを学ぶための新しいフレームワークを紹介します。
スケーラブルで堅牢なフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - DMFC-GraspNet: Differentiable Multi-Fingered Robotic Grasp Generation in
Cluttered Scenes [22.835683657191936]
マルチフィンガーロボットグリップは、複雑なオブジェクト操作を行う可能性がある。
マルチフィンガーロボットグリップの現在の技術は、推論時間毎に1つのグリップしか予測しないことが多い。
本稿では,この課題に対処するための3つの主要なコントリビューションを持つ,微分可能なマルチフィンガーグリップ生成ネットワーク(DMFC-GraspNet)を提案する。
論文 参考訳(メタデータ) (2023-08-01T11:21:07Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
本研究では,BALLUロボットのシステム識別による制御ポリシのロバストなシミュレートを実演する。
標準的な教師あり学習の定式化に頼るのではなく、深層強化学習を利用して外部力政策を訓練する。
シミュレーショントラジェクトリと実世界のトラジェクトリを比較することで,改良されたシミュレーション忠実度を解析する。
論文 参考訳(メタデータ) (2023-03-16T18:49:05Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - DiSECt: A Differentiable Simulator for Parameter Inference and Control
in Robotic Cutting [71.50844437057555]
軟質材料を切断するための最初の微分可能シミュレータであるDiSECtについて述べる。
シミュレータは、符号付き距離場に基づく連続接触モデルにより有限要素法を増強する。
このシミュレータは, 最先端の商用解法を用いて, 結果の力やフィールドに適合するようにキャリブレーションできることを示す。
論文 参考訳(メタデータ) (2022-03-19T07:27:19Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
ディープラーニングがロボティクス研究のパラダイムシフトを引き起こし、大量のデータを必要とする方法が好まれている。
最先端のアプローチは、データ生成が高速かつ安価であるシミュレーションで学ぶ。
本稿では,ランダム化シミュレーションから学習する手法である「領域ランダム化」に焦点をあてる。
論文 参考訳(メタデータ) (2021-11-01T13:55:41Z) - Simulation-based Bayesian inference for multi-fingered robotic grasping [6.677646909984405]
マルチフィンガーロボットグリーピングは、普遍的なピックと巧妙な操作のための、決定不可能なステップストーンである。
しかし、マルチフィンガーグリップは、リッチな非滑らかな接触ダイナミクスやノイズのために制御が難しいままである。
本稿では,確率-証拠比の深部ニューラルネットワークに基づくベイズ推論のための新しいシミュレーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T08:44:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。