An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization
- URL: http://arxiv.org/abs/2205.15884v1
- Date: Tue, 31 May 2022 15:35:46 GMT
- Title: An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization
- Authors: Yani Xue, Miqing Li, Xiaohui Liu
- Abstract summary: We develop an effective evolutionary algorithm (E3A) that can handle various many-objective problems.
In E3A, inspired by SDE, a novel population maintenance method is proposed.
We conduct extensive experiments and show that E3A performs better than 11 state-of-the-art many-objective evolutionary algorithms.
- Score: 2.5594423685710814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In evolutionary multi-objective optimization, effectiveness refers to how an
evolutionary algorithm performs in terms of converging its solutions into the
Pareto front and also diversifying them over the front. This is not an easy
job, particularly for optimization problems with more than three objectives,
dubbed many-objective optimization problems. In such problems, classic
Pareto-based algorithms fail to provide sufficient selection pressure towards
the Pareto front, whilst recently developed algorithms, such as
decomposition-based ones, may struggle to maintain a set of well-distributed
solutions on certain problems (e.g., those with irregular Pareto fronts).
Another issue in some many-objective optimizers is rapidly increasing
computational requirement with the number of objectives, such as
hypervolume-based algorithms and shift-based density estimation (SDE) methods.
In this paper, we aim to address this problem and develop an effective and
efficient evolutionary algorithm (E3A) that can handle various many-objective
problems. In E3A, inspired by SDE, a novel population maintenance method is
proposed. We conduct extensive experiments and show that E3A performs better
than 11 state-of-the-art many-objective evolutionary algorithms in quickly
finding a set of well-converged and well-diversified solutions.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
Most of the real-world problems are multimodal in nature that consists of multiple optimum values.
Classical gradient-based methods fail for optimization problems in which the objective functions are either discontinuous or non-differentiable.
We have proposed an algorithm known as Enhanced Opposition Differential Evolution (EODE) algorithm to solve the MMOPs.
arXiv Detail & Related papers (2022-08-23T16:18:27Z) - An Efficient Multi-Indicator and Many-Objective Optimization Algorithm
based on Two-Archive [7.7415390727490445]
This paper proposes an indicator-based multi-objective optimization algorithm based on two-archive (SRA3)
It can efficiently select good individuals in environment selection based on indicators performance and uses an adaptive parameter strategy for parental selection without setting additional parameters.
Experiments on the DTLZ and WFG problems show that SRA3 has good convergence and diversity while maintaining high efficiency.
arXiv Detail & Related papers (2022-01-14T13:09:50Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - A Framework to Handle Multi-modal Multi-objective Optimization in
Decomposition-based Evolutionary Algorithms [7.81768535871051]
decomposition-based evolutionary algorithms have good performance for multi-objective optimization.
They are likely to perform poorly for multi-modal multi-objective optimization due to the lack of mechanisms to maintain the solution space diversity.
This paper proposes a framework to improve the performance of decomposition-based evolutionary algorithms for multi-modal multi-objective optimization.
arXiv Detail & Related papers (2020-09-30T14:32:57Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - sKPNSGA-II: Knee point based MOEA with self-adaptive angle for Mission
Planning Problems [2.191505742658975]
Some problems have many objectives which lead to a large number of non-dominated solutions.
This paper presents a new algorithm that has been designed to obtain the most significant solutions.
This new algorithm has been applied to the real world application in Unmanned Air Vehicle (UAV) Mission Planning Problem.
arXiv Detail & Related papers (2020-02-20T17:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.