A Universal Framework for Large-Scale Multi-Objective Optimization Based on Particle Drift and Diffusion
- URL: http://arxiv.org/abs/2507.05847v1
- Date: Tue, 08 Jul 2025 10:22:36 GMT
- Title: A Universal Framework for Large-Scale Multi-Objective Optimization Based on Particle Drift and Diffusion
- Authors: Jia-Cheng Li, Min-Rong Chen, Guo-Qiang Zeng, Jian Weng, Man Wang, Jia-Lin Mai,
- Abstract summary: Large-scale multi-objective optimization poses challenges to existing evolutionary algorithms.<n>Inspired by the motion of particles in physics, we propose a universal framework for large-scale multi-objective optimization.
- Score: 11.006819199336983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale multi-objective optimization poses challenges to existing evolutionary algorithms in maintaining the performances of convergence and diversity because of high dimensional decision variables. Inspired by the motion of particles in physics, we propose a universal framework for large-scale multi-objective optimization based on particle drift and diffusion to solve these challenges in this paper. This framework innovatively divides the optimization process into three sub-stages: two coarse-tuning sub-stages and one fine-tuning sub-stage. Different strategies of drift-diffusion operations are performed on the guiding solutions according to the current sub-stage, ingeniously simulating the movement of particles under diverse environmental conditions. Finally, representative evolutionary algorithms are embedded into the proposed framework, and their effectiveness are evaluated through comparative experiments on various large-scale multi-objective problems with 1000 to 5000 decision variables. Moreover, comparative algorithms are conducted on neural network training problems to validate the effectiveness of the proposed framework in the practical problems. The experimental results demonstrate that the framework proposed in this paper significantly enhances the performance of convergence and diversity of MOEAs, and improves the computational efficiency of algorithms in solving large-scale multi-objective optimization problems.
Related papers
- Exploring the Boundary of Diffusion-based Methods for Solving Constrained Optimization [46.75288477458697]
We propose a novel diffusion-based framework for Continuous Constrained Optimization problems called DiOpt.<n>DiOpt operates in two distinct phases: an initial warm-start phase, implemented via supervised learning, followed by a bootstrapping phase.<n>It is designed to iteratively refine solutions, thereby improving the objective function while rigorously satisfying problem constraints.
arXiv Detail & Related papers (2025-02-14T17:43:08Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
Constrained multi-objective optimization problems (CMOPs) pervade real-world applications in science, engineering, and design.
We present the first of its kind evolutionary optimization framework, inspired by the principles of the alternating direction method of multipliers that decouples objective and constraint functions.
Our framework tackles CMOPs with unknown constraints by reformulating the original problem into an additive form of two subproblems, each of which is allotted a dedicated evolutionary population.
arXiv Detail & Related papers (2024-01-02T00:38:20Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization [2.5594423685710814]
We develop an effective evolutionary algorithm (E3A) that can handle various many-objective problems.
In E3A, inspired by SDE, a novel population maintenance method is proposed.
We conduct extensive experiments and show that E3A performs better than 11 state-of-the-art many-objective evolutionary algorithms.
arXiv Detail & Related papers (2022-05-31T15:35:46Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
Large-scale multiobjective optimization problems (LSMOPs) are characterized as involving hundreds or even thousands of decision variables and multiple conflicting objectives.
Previous research has shown that these optimal solutions are uniformly distributed on the manifold structure in the low-dimensional space.
In this work, a generative adversarial network (GAN)-based manifold framework is proposed to learn the manifold and generate high-quality solutions.
arXiv Detail & Related papers (2021-01-08T09:38:38Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - A Decomposition-based Large-scale Multi-modal Multi-objective
Optimization Algorithm [9.584279193016522]
We propose an efficient multi-modal multi-objective optimization algorithm based on the widely used MOEA/D algorithm.
Experimental results show that our proposed algorithm can effectively preserve the diversity of solutions in the decision space.
arXiv Detail & Related papers (2020-04-21T09:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.