A Comparison-Relationship-Surrogate Evolutionary Algorithm for Multi-Objective Optimization
- URL: http://arxiv.org/abs/2504.19411v2
- Date: Tue, 29 Apr 2025 06:28:04 GMT
- Title: A Comparison-Relationship-Surrogate Evolutionary Algorithm for Multi-Objective Optimization
- Authors: Christopher M. Pierce, Young-Kee Kim, Ivan Bazarov,
- Abstract summary: We propose a new evolutionary algorithm "CRSEA" which uses the comparison-relationship model.<n>We find that CRSEA finds better converged solutions than the tested SAEAs on many medium-scale, biobjective problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Evolutionary algorithms often struggle to find well converged (e.g small inverted generational distance on test problems) solutions to multi-objective optimization problems on a limited budget of function evaluations (here, a few hundred). The family of surrogate-assisted evolutionary algorithms (SAEAs) offers a potential solution to this shortcoming through the use of data driven models which augment evaluations of the objective functions. A surrogate model which has shown promise in single-objective optimization is to predict the "comparison relationship" between pairs of solutions (i.e. who's objective function is smaller). In this paper, we investigate the performance of this model on multi-objective optimization problems. First, we propose a new algorithm "CRSEA" which uses the comparison-relationship model. Numerical experiments are then performed with the DTLZ and WFG test suites plus a real-world problem from the field of accelerator physics. We find that CRSEA finds better converged solutions than the tested SAEAs on many of the medium-scale, biobjective problems chosen from the WFG suite suggesting the comparison-relationship surrogate as a promising tool for improving the efficiency of multi-objective optimization algorithms.
Related papers
- Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
We employ a large language model (LLM) to enhance evolutionary search for solving constrained multi-objective optimization problems.
Our aim is to speed up the convergence of the evolutionary population.
arXiv Detail & Related papers (2024-05-09T13:44:04Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Solving the Food-Energy-Water Nexus Problem via Intelligent Optimization Algorithms [46.48853432592689]
Food-Energy-Water systems are intricately linked among food, energy and water that impact each other.
They usually involve a huge number of decision variables and many conflicting objectives to be optimized.
In this paper, we solve a Food-Energy-Water optimization problem by using the state-of-art intelligent optimization methods and compare their performance.
arXiv Detail & Related papers (2024-04-10T06:19:19Z) - Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems [1.0499611180329806]
The proposed algorithm consists of three parts: rank-based learning, hyper-volume-based non-dominated search, and local search in the relatively sparse objective space.
The experimental results of benchmark problems and a real-world application on geothermal reservoir heat extraction optimization demonstrate that the proposed algorithm shows superior performance.
arXiv Detail & Related papers (2023-04-19T06:25:04Z) - Towards Self-adaptive Mutation in Evolutionary Multi-Objective
Algorithms [10.609857097723266]
We study how self-adaptation influences multi-objective evolutionary algorithms.
We show that adapting the mutation rate based on single-objective optimization and hypervolume can speed up the convergence of GSEMO.
We propose a GSEMO with self-adaptive mutation, which considers optimizing for single objectives and adjusts the mutation rate for each solution individually.
arXiv Detail & Related papers (2023-03-08T14:26:46Z) - Multi-surrogate Assisted Efficient Global Optimization for Discrete
Problems [0.9127162004615265]
This paper investigates the possible benefit of a concurrent utilization of multiple simulation-based surrogate models to solve discrete problems.
Our findings indicate that SAMA-DiEGO can rapidly converge to better solutions on a majority of the test problems.
arXiv Detail & Related papers (2022-12-13T09:10:08Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Neural Improvement Heuristics for Graph Combinatorial Optimization
Problems [49.85111302670361]
We introduce a novel Neural Improvement (NI) model capable of handling graph-based problems where information is encoded in the nodes, edges, or both.
The presented model serves as a fundamental component for hill-climbing-based algorithms that guide the selection of neighborhood operations for each.
arXiv Detail & Related papers (2022-06-01T10:35:29Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
We introduce a steady-state evolutionary algorithm for solving multi-modal, multi-objective optimization problems (MMOPs)
We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations.
arXiv Detail & Related papers (2022-01-18T03:31:11Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Surrogate Assisted Evolutionary Algorithm for Medium Scale Expensive
Multi-Objective Optimisation Problems [4.338938227238059]
Building a surrogate model of an objective function has shown to be effective to assist evolutionary algorithms (EAs) to solve real-world complex optimisation problems.
We propose a Gaussian process surrogate model assisted EA for medium-scale expensive multi-objective optimisation problems with up to 50 decision variables.
The effectiveness of our proposed algorithm is validated on benchmark problems with 10, 20, 50 variables, comparing with three state-of-the-art SAEAs.
arXiv Detail & Related papers (2020-02-08T12:06:08Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.