Hedging option books using neural-SDE market models
- URL: http://arxiv.org/abs/2205.15991v1
- Date: Tue, 31 May 2022 17:48:18 GMT
- Title: Hedging option books using neural-SDE market models
- Authors: Samuel N. Cohen, Christoph Reisinger, Sheng Wang
- Abstract summary: We show that neural-SDE market models achieve lower hedging errors than Black--Scholes delta and delta-vega hedging consistently over time.
In addition, hedging using market models leads to similar performance to hedging using Heston models, while the former tends to be more robust during stressed market periods.
- Score: 6.319314191226118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the capability of arbitrage-free neural-SDE market models to yield
effective strategies for hedging options. In particular, we derive
sensitivity-based and minimum-variance-based hedging strategies using these
models and examine their performance when applied to various option portfolios
using real-world data. Through backtesting analysis over typical and stressed
market periods, we show that neural-SDE market models achieve lower hedging
errors than Black--Scholes delta and delta-vega hedging consistently over time,
and are less sensitive to the tenor choice of hedging instruments. In addition,
hedging using market models leads to similar performance to hedging using
Heston models, while the former tends to be more robust during stressed market
periods.
Related papers
- Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback [64.67540769692074]
Large language models (LLMs) fine-tuned with alignment techniques, such as reinforcement learning from human feedback, have been instrumental in developing some of the most capable AI systems to date.
We introduce an approach called Margin Matching Preference Optimization (MMPO), which incorporates relative quality margins into optimization, leading to improved LLM policies and reward models.
Experiments with both human and AI feedback data demonstrate that MMPO consistently outperforms baseline methods, often by a substantial margin, on popular benchmarks including MT-bench and RewardBench.
arXiv Detail & Related papers (2024-10-04T04:56:11Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Estimating risks of option books using neural-SDE market models [6.319314191226118]
We use an arbitrage-free neural-SDE market model to produce realistic scenarios for the joint dynamics of multiple European options on a single underlying.
We show that our models are more computationally efficient and accurate for evaluating the Value-at-Risk (VaR) of option portfolios, with better coverage performance and less procyclicality than standard filtered historical simulation approaches.
arXiv Detail & Related papers (2022-02-15T02:39:42Z) - Data-driven Hedging of Stock Index Options via Deep Learning [6.952039070065292]
We develop deep learning models to learn the hedge ratio for S&P500 index options directly from options data.
We compare different combinations of features and show that a feedforward neural network model with time to maturity, Black-Scholes delta and a sentiment variable performs the best in the out-of-sample test.
arXiv Detail & Related papers (2021-11-05T12:53:47Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Discriminating modelling approaches for Point in Time Economic Scenario
Generation [5.733401663293044]
We introduce the notion of Point in Time Economic Scenario Generation (PiT ESG)
PiT ESGs should provide quicker and more flexible reactions to sudden economic changes than traditional ESGs calibrated solely to long periods of historical data.
We compare the nonparametric filtered historical simulation, GARCH model with joint likelihood estimation (parametric), Restricted Boltzmann Machine and the conditional Variational Autoencoder (Generative Networks) for their suitability as PiT ESG.
arXiv Detail & Related papers (2021-08-19T17:36:53Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Deep Stochastic Volatility Model [3.3970049571884204]
We propose a deep volatility model (DSVM) based on the framework of deep latent variable models.
It uses flexible deep learning models to automatically detect the dependence of the future volatility on past returns.
In real data analysis, the DSVM outperforms several popular alternative volatility models.
arXiv Detail & Related papers (2021-02-25T03:25:33Z) - Robust pricing and hedging via neural SDEs [0.0]
We develop and analyse novel algorithms needed for efficient use of neural SDEs.
We find robust bounds for prices of derivatives and the corresponding hedging strategies while incorporating relevant market data.
Neural SDEs allow consistent calibration under both the risk-neutral and the real-world measures.
arXiv Detail & Related papers (2020-07-08T14:33:17Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.