論文の概要: Attack-Agnostic Adversarial Detection
- arxiv url: http://arxiv.org/abs/2206.00489v1
- Date: Wed, 1 Jun 2022 13:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 12:41:21.563924
- Title: Attack-Agnostic Adversarial Detection
- Title(参考訳): 攻撃非依存な敵検出
- Authors: Jiaxin Cheng, Mohamed Hussein, Jay Billa and Wael AbdAlmageed
- Abstract要約: 本稿では,2つの側面において,敵対的不可知論による統計的偏差を定量化する。
本手法は, CIFAR10, CIFAR100, SVHNでそれぞれ94.9%, 89.7%, 94.6%のROC AUCを達成でき, 攻撃のほとんどにおいて敵の例で訓練した対向検出器と同等の性能を有することを示す。
- 参考スコア(独自算出の注目度): 13.268960384729088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing number of adversarial attacks in recent years gives attackers an
advantage over defenders, as defenders must train detectors after knowing the
types of attacks, and many models need to be maintained to ensure good
performance in detecting any upcoming attacks. We propose a way to end the
tug-of-war between attackers and defenders by treating adversarial attack
detection as an anomaly detection problem so that the detector is agnostic to
the attack. We quantify the statistical deviation caused by adversarial
perturbations in two aspects. The Least Significant Component Feature (LSCF)
quantifies the deviation of adversarial examples from the statistics of benign
samples and Hessian Feature (HF) reflects how adversarial examples distort the
landscape of the model's optima by measuring the local loss curvature.
Empirical results show that our method can achieve an overall ROC AUC of 94.9%,
89.7%, and 94.6% on CIFAR10, CIFAR100, and SVHN, respectively, and has
comparable performance to adversarial detectors trained with adversarial
examples on most of the attacks.
- Abstract(参考訳): 近年の敵攻撃の増加により、攻撃者は攻撃の種類を知った後、検知器を訓練しなければならないため、攻撃者は防御者に対して有利になる。
本稿では,敵攻撃検出を異常検出問題として扱うことにより,攻撃者と守備者間の綱引きを解消し,攻撃に非依存にする方法を提案する。
対向摂動による統計的偏差を2つの側面で定量化する。
The Least Significant Component Feature (LSCF)は、良性サンプルの統計から敵の例の偏差を定量化し、Hessian Feature (HF)は、逆の例が局所的な損失曲率を測定してモデルの最適景観を歪ませる様子を反映している。
実験の結果,CIFAR10, CIFAR100, SVHNでそれぞれ94.9%, 89.7%, 94.6%のROC AUCを達成でき, 敵の攻撃例で訓練した対向検出器と同等の性能を示した。
関連論文リスト
- Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors [0.0]
アダプティブアタックとは、攻撃者が防御を意識し、その戦略を適応させる攻撃である。
提案手法は, クリーンな精度を損なうことなく, 敵の訓練を活用して攻撃を検知する能力を強化する。
CIFAR-10とSVHNデータセットの実験的評価により,提案アルゴリズムは,適応的敵攻撃を正確に識別する検出器の能力を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-04-18T12:13:09Z) - Unraveling Adversarial Examples against Speaker Identification --
Techniques for Attack Detection and Victim Model Classification [24.501269108193412]
敵対的な例は話者識別システムを脅かすことが証明されている。
本稿では,敵対的事例の存在を検出する手法を提案する。
また、敵攻撃を行う被害者モデルを特定する方法についても紹介する。
論文 参考訳(メタデータ) (2024-02-29T17:06:52Z) - Malicious Agent Detection for Robust Multi-Agent Collaborative Perception [52.261231738242266]
多エージェント協調(MAC)知覚は、単エージェント認識よりも敵攻撃に対して脆弱である。
MAC知覚に特異的な反応防御であるMADE(Malicious Agent Detection)を提案する。
我々は、ベンチマーク3DデータセットV2X-simとリアルタイムデータセットDAIR-V2Xで包括的な評価を行う。
論文 参考訳(メタデータ) (2023-10-18T11:36:42Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
敵対的攻撃は、ディープラーニングアプリケーションに対する安全性とセキュリティ上の懸念を引き起こす。
モデルの勾配一貫性を反映した適応応答特性(ARC)特性を構築する。
私たちの方法は直感的で、軽量で、非侵襲的で、データ不要です。
論文 参考訳(メタデータ) (2022-05-19T14:26:50Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Using Anomaly Feature Vectors for Detecting, Classifying and Warning of
Outlier Adversarial Examples [4.096598295525345]
分類ニューラルネットワークに提示される敵入力を検出し,分類し,警告するシステムであるDeClaWについて述べる。
予備的な発見は、AFVがCIFAR-10データセット上で93%近い精度で、いくつかの種類の敵攻撃を区別するのに役立つことを示唆している。
論文 参考訳(メタデータ) (2021-07-01T16:00:09Z) - Random Projections for Adversarial Attack Detection [8.684378639046644]
敵の攻撃検出は 2つの観点から 根本的な問題です
本稿では,無作為射影の特殊特性を利用して,清潔で敵対的な例の挙動を特徴付ける手法を提案する。
性能評価は私達の技術が($>0.92$ AUC)技術(SOTA)攻撃戦略の競争状態を上回っていることを示します。
論文 参考訳(メタデータ) (2020-12-11T15:02:28Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
本稿では,最適段差の大きさと目的関数の問題による障害を克服するPGD攻撃の2つの拡張を提案する。
そして、我々の新しい攻撃と2つの補完的な既存の攻撃を組み合わせることで、パラメータフリーで、計算に手頃な価格で、ユーザに依存しない攻撃のアンサンブルを形成し、敵の堅牢性をテストする。
論文 参考訳(メタデータ) (2020-03-03T18:15:55Z) - Adversarial Detection and Correction by Matching Prediction
Distributions [0.0]
この検出器は、MNISTとFashion-MNISTに対するCarini-WagnerやSLIDEのような強力な攻撃をほぼ完全に中和する。
本手法は,攻撃者がモデルと防御の両方について十分な知識を持つホワイトボックス攻撃の場合においても,なおも敵の例を検出することができることを示す。
論文 参考訳(メタデータ) (2020-02-21T15:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。