論文の概要: The robust way to stack and bag: the local Lipschitz way
- arxiv url: http://arxiv.org/abs/2206.00513v1
- Date: Wed, 1 Jun 2022 14:15:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 13:39:26.095729
- Title: The robust way to stack and bag: the local Lipschitz way
- Title(参考訳): スタックとバッグの堅牢な方法:ローカルリプシッツの方法
- Authors: Thulasi Tholeti, Sheetal Kalyani
- Abstract要約: 我々は、ニューラルネットワークの局所的なリプシッツ定数と、その逆の堅牢性との関係を利用して、ニューラルネットワークのアンサンブルを構築する。
提案したアーキテクチャは,単一ネットワークや従来のアンサンブル方式よりも堅牢であることがわかった。
- 参考スコア(独自算出の注目度): 13.203765985718201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has established that the local Lipschitz constant of a neural
network directly influences its adversarial robustness. We exploit this
relationship to construct an ensemble of neural networks which not only
improves the accuracy, but also provides increased adversarial robustness. The
local Lipschitz constants for two different ensemble methods - bagging and
stacking - are derived and the architectures best suited for ensuring
adversarial robustness are deduced. The proposed ensemble architectures are
tested on MNIST and CIFAR-10 datasets in the presence of white-box attacks,
FGSM and PGD. The proposed architecture is found to be more robust than a) a
single network and b) traditional ensemble methods.
- Abstract(参考訳): 近年の研究では、ニューラルネットワークの局所的なリプシッツ定数がその対向的堅牢性に直接影響を与えることが確認されている。
この関係を利用してニューラルネットワークのアンサンブルを構築し、精度を向上するだけでなく、対向的ロバスト性も向上する。
2つの異なるアンサンブル法のための局所リプシッツ定数が導出され、逆ロバスト性を確保するのに最適なアーキテクチャが導出される。
提案したアンサンブルアーキテクチャは、ホワイトボックス攻撃、FGSM、PGDの存在下で、MNISTおよびCIFAR-10データセット上でテストされる。
提案されたアーキテクチャは、より堅牢であることがわかった
a) 一つのネットワークと
b) 伝統的なアンサンブル方法
関連論文リスト
- Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Lipschitz Bound Analysis of Neural Networks [0.0]
リプシッツ境界推定は、ディープニューラルネットワークを正則化し、敵の攻撃に対して堅牢にする効果的な方法である。
本稿では、畳み込みニューラルネットワーク(CNN)のための非自明なリプシッツ境界証明書を得る際の大きなギャップについて述べる。
また,畳み込みニューラルネットワーク(CNN)を完全連結ネットワークに変換するために,畳み込み層やToeplitz行列の展開も可能であることを示す。
論文 参考訳(メタデータ) (2022-07-14T23:40:22Z) - Adversarial Vulnerability of Randomized Ensembles [12.082239973914326]
ランダム化アンサンブルは、通常のATモデルよりも、知覚不能な逆方向の摂動に対して脆弱であることを示す。
本稿では,適応PGDが実現しなかった場合においても,ランダムアンサンブルを再現できる理論的・効率的な攻撃アルゴリズム(ARC)を提案する。
論文 参考訳(メタデータ) (2022-06-14T10:37:58Z) - Robust Binary Models by Pruning Randomly-initialized Networks [57.03100916030444]
ランダムな二元ネットワークから敵攻撃に対して頑健なモデルを得る方法を提案する。
ランダムな二元ネットワークを切断することにより、ロバストモデルの構造を学習する。
本手法は, 敵攻撃の有無で, 強力な抽選券仮説を立証する。
論文 参考訳(メタデータ) (2022-02-03T00:05:08Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
認証された堅牢性は、安全クリティカルなアプリケーションにおいて、ディープニューラルネットワークにとって望ましい性質である。
提案手法は,MNISTおよびTinyNetデータセットにおける最先端の手法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-11-02T06:44:10Z) - Scalable Lipschitz Residual Networks with Convex Potential Flows [120.27516256281359]
残差ネットワーク勾配流における凸ポテンシャルを用いることで,1ドルのLipschitz変換が組み込まれていることを示す。
CIFAR-10の包括的な実験は、アーキテクチャのスケーラビリティと、証明可能な防御に$ell$のアプローチの利点を実証している。
論文 参考訳(メタデータ) (2021-10-25T07:12:53Z) - DSRNA: Differentiable Search of Robust Neural Architectures [11.232234265070753]
ディープラーニングアプリケーションでは、ディープニューラルネットワークのアーキテクチャは高い精度を達成するために不可欠である。
堅牢なニューラルアーキテクチャの微分可能な探索方法を提案する。
我々の手法は、複数のNASベースラインよりも、様々なノルムバウンド攻撃に対して堅牢である。
論文 参考訳(メタデータ) (2020-12-11T04:52:54Z) - Adversarially Robust Neural Architectures [43.74185132684662]
本稿では,NASフレームワークを用いたアーキテクチャの観点から,ネットワークの対角的ロバスト性を改善することを目的とする。
本稿では, 対向ロバスト性, リプシッツ定数, アーキテクチャパラメータの関係について検討する。
提案アルゴリズムは,異なるデータセットに対する様々な攻撃の下で,すべてのモデルの中で最高の性能を実証的に達成する。
論文 参考訳(メタデータ) (2020-09-02T08:52:15Z) - Neural Ensemble Search for Uncertainty Estimation and Dataset Shift [67.57720300323928]
ニューラルネットワークのアンサンブルは、データセットシフトに対する精度、不確実性キャリブレーション、堅牢性の観点から、スタンドアロンネットワークよりも優れたパフォーマンスを実現する。
本稿では,アンサンブルをアンサンブルで自動構築する2つの手法を提案する。
得られたアンサンブルは、精度だけでなく、不確実なキャリブレーションやデータセットシフトに対する堅牢性の観点からも、深いアンサンブルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-15T17:38:15Z) - A Closer Look at Accuracy vs. Robustness [94.2226357646813]
堅牢なネットワークをトレーニングする現在の方法は、テスト精度の低下につながる。
実際の画像データセットが実際に分離されていることを示す。
我々は、実際に堅牢性と精度を達成するには、局所的なリプシッツを強制する手法を使う必要があると結論付けている。
論文 参考訳(メタデータ) (2020-03-05T07:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。