論文の概要: PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme
price movement prediction of Bitcoin
- arxiv url: http://arxiv.org/abs/2206.00648v2
- Date: Sat, 21 Oct 2023 10:45:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 15:06:40.085107
- Title: PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme
price movement prediction of Bitcoin
- Title(参考訳): PreBit -- Twitter FinBERT組み込みによるBitcoinの極端な価格変動予測のためのマルチモーダルモデル
- Authors: Yanzhao Zou, Dorien Herremans
- Abstract要約: 我々はビットコインの極端な価格変動を予測するためのマルチモーダルモデルを提案する。
このモデルは、さまざまな関連資産、技術的指標、およびTwitterコンテンツとして入力される。
平均的戦略を移動させるリスクを減らし、黒字取引戦略を構築するのに使用できることを示す。
- 参考スコア(独自算出の注目度): 8.38397409405955
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Bitcoin, with its ever-growing popularity, has demonstrated extreme price
volatility since its origin. This volatility, together with its decentralised
nature, make Bitcoin highly subjective to speculative trading as compared to
more traditional assets. In this paper, we propose a multimodal model for
predicting extreme price fluctuations. This model takes as input a variety of
correlated assets, technical indicators, as well as Twitter content. In an
in-depth study, we explore whether social media discussions from the general
public on Bitcoin have predictive power for extreme price movements. A dataset
of 5,000 tweets per day containing the keyword `Bitcoin' was collected from
2015 to 2021. This dataset, called PreBit, is made available online. In our
hybrid model, we use sentence-level FinBERT embeddings, pretrained on financial
lexicons, so as to capture the full contents of the tweets and feed it to the
model in an understandable way. By combining these embeddings with a
Convolutional Neural Network, we built a predictive model for significant
market movements. The final multimodal ensemble model includes this NLP model
together with a model based on candlestick data, technical indicators and
correlated asset prices. In an ablation study, we explore the contribution of
the individual modalities. Finally, we propose and backtest a trading strategy
based on the predictions of our models with varying prediction threshold and
show that it can used to build a profitable trading strategy with a reduced
risk over a `hold' or moving average strategy.
- Abstract(参考訳): Bitcoinは、その人気がますます高まっているが、その起源以来、極端な価格変動を見せている。
このボラティリティと分散的な性質により、bitcoinは従来の資産に比べて投機的取引に非常に主観的になる。
本稿では,極端な価格変動を予測するマルチモーダルモデルを提案する。
このモデルは、さまざまな関連資産、技術的指標、およびTwitterコンテンツとして入力される。
詳細な研究では、bitcoinに関するソーシャルメディアの議論が、極端な価格変動に対して予測力を持っているかどうかを探っている。
2015年から2021年にかけて,‘Bitcoin’というキーワードを含む1日5000ツイートのデータセットが収集された。
PreBitと呼ばれるこのデータセットはオンラインで公開されている。
当社のハイブリッドモデルでは,金融レキシコンに事前学習された文レベルのfinbert埋め込みを使用して,ツイートの全内容をキャプチャし,理解可能な方法でモデルにフィードします。
これらの埋め込みを畳み込みニューラルネットワークと組み合わせることで、市場の動きを予測するモデルを構築しました。
最後のマルチモーダルアンサンブルモデルには、このNLPモデルと、ロウソクスティックデータ、技術的指標、関連資産価格に基づくモデルが含まれる。
アブレーション研究では,個々のモダリティの寄与について検討する。
最後に,予測しきい値を変化させたモデル予測に基づく取引戦略の提案とバックテストを行い,'ホールド'や移動平均戦略よりもリスクを低減した収益性のある取引戦略の構築に使用できることを示す。
関連論文リスト
- Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and
Large Language Models [57.70351255180495]
当社はChatGPTを使用して、各見出しが企業の株価に対して良いか悪いか、中立かを評価する。
また,ChatGPTは従来の感情分析法よりも優れていた。
ChatGPT-4に基づくロングショート戦略はシャープ比が最も高い。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Forecasting Bitcoin volatility spikes from whale transactions and
CryptoQuant data using Synthesizer Transformer models [5.88864611435337]
ボラティリティ予測のためのディープラーニング合成器変換器モデルを提案する。
以上の結果から,既存の最先端モデルよりも優れたモデルであることが示唆された。
提案手法はビットコイン市場における極端なボラティリティ(変動性)の動きを予測するための有用なツールであることを示す。
論文 参考訳(メタデータ) (2022-10-06T05:44:29Z) - Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial
Task & Hyperbolic Models [31.690290125073197]
バブル検出のための新しいマルチスパン識別タスクであるCryptoBubblesを公開・公開する。
我々はこのマルチスパン識別タスクに適した一連のシーケンス・ツー・シーケンス・ハイパーボリックモデルを開発する。
RedditとTwitterでCryptoBubblesとハイパーボリックモデルの実用性を示す。
論文 参考訳(メタデータ) (2022-05-11T08:10:02Z) - A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools
Stock Prediction [100.9772316028191]
本稿では,3つのストック予測犠牲者モデルを騙すために,様々な攻撃構成を試行する。
以上の結果から,提案手法が一貫した成功率を達成し,取引シミュレーションにおいて大きな損失をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-01T05:12:22Z) - Exploration of Algorithmic Trading Strategies for the Bitcoin Market [1.933681537640272]
この取り組みは、Bitcoin市場にアルゴリズムによるトレーディングのアプローチをもたらし、その価格の変動を日々利用している。
我々は,2021年第1四半期を通じて収集された全く見えないデータに基づいて,実世界のトレーディング戦略を用いてモデルを実証的に評価した。
モデルの平均利益は86%で、従来の買い取り戦略と一致した。
論文 参考訳(メタデータ) (2021-10-28T08:13:34Z) - Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data [2.9223917785251285]
我々は、Twitterの公開ソーシャルメディアデータのディープラーニング表現を使用して、比較的新しい資産クラスの暗号通貨(特にBitcoin)のボラティリティ予測に重点を置いている。
フィールドワークのために、3000万以上のBitcoin関連ツイートからセマンティック情報とユーザーインタラクション統計を抽出した。
収集した情報を組み合わせて、いくつかのディープラーニングアーキテクチャを構築しました。
論文 参考訳(メタデータ) (2021-10-27T09:55:03Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Real-Time Prediction of BITCOIN Price using Machine Learning Techniques
and Public Sentiment Analysis [0.0]
本研究の目的は、機械学習技術と感情分析により、USDにおけるBitcoinの予測可能な価格方向を決定することである。
TwitterとRedditは、大衆の感情を研究する研究者から大きな注目を集めている。
我々は、感情分析と機械学習の原則をTwitterやRedditの投稿から抽出したツイートに適用した。
論文 参考訳(メタデータ) (2020-06-18T15:40:11Z) - Forecasting Bitcoin closing price series using linear regression and
neural networks models [4.17510581764131]
データ価格と前日のボリュームを用いて、Bitcoinの日次閉鎖価格の予測方法について検討する。
統計的手法と機械学習アルゴリズムの両方を実装した。
論文 参考訳(メタデータ) (2020-01-04T21:04:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。