論文の概要: Coordinated Double Machine Learning
- arxiv url: http://arxiv.org/abs/2206.00885v1
- Date: Thu, 2 Jun 2022 05:56:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-03 13:46:54.258600
- Title: Coordinated Double Machine Learning
- Title(参考訳): 協調型ダブル機械学習
- Authors: Nitai Fingerhut, Matteo Sesia, Yaniv Romano
- Abstract要約: 本稿では、ディープニューラルネットワークのための注意深く調整された学習アルゴリズムにより、推定バイアスを低減できると主張している。
シミュレーションデータと実データの両方を用いた数値実験により,提案手法の実証性能が向上したことを示す。
- 参考スコア(独自算出の注目度): 8.808993671472349
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Double machine learning is a statistical method for leveraging complex
black-box models to construct approximately unbiased treatment effect estimates
given observational data with high-dimensional covariates, under the assumption
of a partially linear model. The idea is to first fit on a subset of the
samples two non-linear predictive models, one for the continuous outcome of
interest and one for the observed treatment, and then to estimate a linear
coefficient for the treatment using the remaining samples through a simple
orthogonalized regression. While this methodology is flexible and can
accommodate arbitrary predictive models, typically trained independently of one
another, this paper argues that a carefully coordinated learning algorithm for
deep neural networks may reduce the estimation bias. The improved empirical
performance of the proposed method is demonstrated through numerical
experiments on both simulated and real data.
- Abstract(参考訳): ダブル機械学習(Double Machine Learning)は、複雑なブラックボックスモデルを利用して、高次元の共変量を持つ観測データから得られるほぼ不偏の処理効果の推定値を構築する統計的手法である。
この考え方は、まず2つの非線形予測モデルのサブセットに適合し、1つは興味の連続的な結果、もう1つは観察された処理のためのモデルであり、残りのサンプルを用いた治療の線形係数を単純な直交回帰によって推定する。
この手法は柔軟であり、通常は互いに独立して訓練される任意の予測モデルに対応できるが、深層ニューラルネットワークのための注意深く協調した学習アルゴリズムは推定バイアスを減少させる可能性がある。
シミュレーションおよび実データを用いた数値実験により,提案手法の実証性能が向上したことを示す。
関連論文リスト
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
トレーニングされたニューラルネットワークに観測データを供給することにより、モデルパラメータの後方分布を効率的に取得する。
理論的には、我々の後部はKulback-Leiblerの発散において真の後部に収束することを示す。
論文 参考訳(メタデータ) (2024-04-16T20:40:15Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using
Transfer Learning [0.0]
本稿では,データ不足に対処するためにトランスファーラーニング(transfer learning)を用いて実験的検討を行った。
提案手法では,より精度の低い解析モデルから生成された合成データを用いて,モデルの事前学習を行う。
3x3フォトニックチップで実装された行列重みに対する1dBのルート平均二乗誤差を、利用可能なデータの25%だけを用いて達成する。
論文 参考訳(メタデータ) (2023-08-10T07:33:00Z) - Compositional Score Modeling for Simulation-based Inference [28.422049267537965]
両手法の利点を享受する条件付きスコアモデリングに基づく新しい手法を提案する。
提案手法は, サンプル効率が高く, 自然に複数の観測を推定時に集約し, 標準推定手法の欠点を回避することができる。
論文 参考訳(メタデータ) (2022-09-28T17:08:31Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Joint Dimensionality Reduction for Separable Embedding Estimation [43.22422640265388]
異なるソースからのデータの低次元埋め込みは、機械学習、マルチメディア情報検索、バイオインフォマティクスにおいて重要な役割を果たす。
異なるモダリティのデータや異なる種類の実体からのデータを表す2つの特徴ベクトルに対して,線形埋め込みを共同で学習する,教師付き次元還元法を提案する。
提案手法は,他の次元減少法と比較し,遺伝子・退化関連を予測するための両線形回帰の最先端手法と比較した。
論文 参考訳(メタデータ) (2021-01-14T08:48:37Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
機械学習におけるブラックボックスモデルは、複雑な問題と高次元設定において優れた予測性能を示した。
透明性と解釈可能性の欠如は、重要な意思決定プロセスにおけるそのようなモデルの適用性を制限します。
半パラメトリック統計学のアイデアを用いて予測モデルにおける解釈可能性と性能のトレードオフを行う新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T16:38:15Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。