Realizing quantum speed limit in open system with a PT-symmetric
trapped-ion qubit
- URL: http://arxiv.org/abs/2206.00940v1
- Date: Thu, 2 Jun 2022 09:02:47 GMT
- Title: Realizing quantum speed limit in open system with a PT-symmetric
trapped-ion qubit
- Authors: Pengfei Lu, Teng liu, Yang Liu, Xinxin Rao, Qifeng Lao, Hao Wu, Feng
Zhu, Le Luo
- Abstract summary: We experimentally confirm the proposal in a single dissipative qubit system.
We find that the evolution time of its reversal operation increases with the increasing dissipation intensity.
- Score: 8.108489903565584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evolution time of a qubit under a Hamiltonian operation is one of the key
issues in quantum control, quantum information processing and quantum
computing. It has a lower bound in Hermitian system, which is limited by the
coupling between two states of the qubit, while it is proposed that in a
non-Hermitian system it can be made much smaller without violating the
time-energy uncertainty principle. Here we have experimentally confirmed the
proposal in a single dissipative qubit system and demonstrate that the
evolution time of a qubit from an initial state to an arbitrary state can be
controlled by tuning the dissipation intensity in a non-Hermitian
Parity-Time-Symmetric ($\mathcal{P T}$-symmetric) quantum system. It decreases
with increasing dissipation intensity and also gives a tighter bound for
quantum speed limit (QSL). We also find that the evolution time of its reversal
operation increases with the increasing dissipation intensity. These findings
give us a well-controlled knob for speeding up the qubit operation, and pave
the way towards fast and practical quantum computation, opening the door for
solving sophisticated problems with only a few qubits.
Related papers
- Dissipation-accelerated entanglement generation [0.2356141385409842]
We propose a scheme for speeding up the generation of quantum entanglement between two coupled qubits by introducing a strong dissipation channel to one of these qubits.
The time needed to conditionally attain the maximal entanglement is monotonously decreased as the dissipative rate is increased.
This scheme can be generalized to accelerate the production of the W state for the three-qubit system.
arXiv Detail & Related papers (2024-10-04T02:10:19Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Accelerating relaxation in Markovian open quantum systems through
quantum reset processes [0.0]
We claim that using quantum reset, a common and important operation in quantum timescales, is able to be accelerated significantly.
This faster relaxation induced by the reset protocol is reminiscent of the quantum Mpemba effect.
Our new strategy to accelerate relaxations may also be applied to closed quantum systems or even some non-Markovian open quantum systems.
arXiv Detail & Related papers (2022-12-21T16:31:27Z) - Quantum Speed Limit From Tighter Uncertainty Relation [0.0]
We prove a new quantum speed limit using the tighter uncertainty relations for pure quantum systems undergoing arbitrary unitary evolution.
We show that the MT bound is a special case of the tighter quantum speed limit derived here.
We illustrate the tighter speed limit for pure states with examples using random Hamiltonians and show that the new quantum speed limit outperforms the MT bound.
arXiv Detail & Related papers (2022-11-26T13:14:58Z) - Time scaling and quantum speed limit in non-Hermitian Hamiltonians [0.0]
We report on a time scaling technique to enhance the performances of quantum protocols in non-Hermitian systems.
We derive the quantum speed limit in a system governed by a non-Hermitian Hamiltonian.
arXiv Detail & Related papers (2021-06-09T15:56:16Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Time-optimal quantum transformations with bounded bandwidth [0.0]
We derive sharp lower bounds, also known as quantum speed limits, for the time it takes to transform a quantum system into a state.
In a final section, we use the quantum speed limits to obtain upper bounds on the power with which energy can be extracted from quantum batteries.
arXiv Detail & Related papers (2020-11-24T08:42:08Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.