論文の概要: Suggestive Annotation of Brain MR Images with Gradient-guided Sampling
- arxiv url: http://arxiv.org/abs/2206.01014v1
- Date: Thu, 2 Jun 2022 12:23:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-03 13:24:39.485357
- Title: Suggestive Annotation of Brain MR Images with Gradient-guided Sampling
- Title(参考訳): Gradient-Guided Smpling を用いた脳MR画像の推奨アノテーション
- Authors: Chengliang Dai, Shuo Wang, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia
Bai
- Abstract要約: そこで我々は,脳MRI画像に対する効率的なアノテーションフレームワークを提案し,アノテートを行うための情報的サンプル画像を提案する。
脳腫瘍の分節と全脳の分節という2つの異なる脳画像解析タスクの枠組みを評価する。
提案フレームワークは,手動アノテーションのコストを削減し,医用画像アプリケーションにおけるデータ効率を向上させるための有望な方法を示す。
- 参考スコア(独自算出の注目度): 12.928940875474378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has been widely adopted for medical image analysis in recent
years given its promising performance in image segmentation and classification
tasks. The success of machine learning, in particular supervised learning,
depends on the availability of manually annotated datasets. For medical imaging
applications, such annotated datasets are not easy to acquire, it takes a
substantial amount of time and resource to curate an annotated medical image
set. In this paper, we propose an efficient annotation framework for brain MR
images that can suggest informative sample images for human experts to
annotate. We evaluate the framework on two different brain image analysis
tasks, namely brain tumour segmentation and whole brain segmentation.
Experiments show that for brain tumour segmentation task on the BraTS 2019
dataset, training a segmentation model with only 7% suggestively annotated
image samples can achieve a performance comparable to that of training on the
full dataset. For whole brain segmentation on the MALC dataset, training with
42% suggestively annotated image samples can achieve a comparable performance
to training on the full dataset. The proposed framework demonstrates a
promising way to save manual annotation cost and improve data efficiency in
medical imaging applications.
- Abstract(参考訳): 近年,画像のセグメンテーションや分類作業において有望な性能を持つ機械学習が医療画像解析に広く採用されている。
機械学習の成功、特に教師付き学習は、手動の注釈付きデータセットの可用性に依存する。
医用画像アプリケーションでは、このような注釈付きデータセットの取得が容易ではないため、注釈付き医用画像セットのキュレーションにはかなりの時間とリソースが必要となる。
本稿では,脳MRI画像のアノテートのための効果的なアノテーションフレームワークを提案する。
脳腫瘍の分節と全脳の分節という2つの異なる脳画像解析タスクの枠組みを評価する。
実験によると、BraTS 2019データセットの脳腫瘍セグメンテーションタスクでは、7%の注釈付きイメージサンプルでセグメントモデルをトレーニングすることで、完全なデータセットでのトレーニングに匹敵するパフォーマンスが得られる。
MALCデータセット上の全脳セグメント化では、42%の暗黙的な注釈付きイメージサンプルによるトレーニングは、完全なデータセットでのトレーニングと同等のパフォーマンスを達成することができる。
提案フレームワークは,手作業によるアノテーションコストの削減と,医用画像アプリケーションにおけるデータ効率の向上に有望な方法を示す。
関連論文リスト
- LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - Semi-Supervised and Self-Supervised Collaborative Learning for Prostate
3D MR Image Segmentation [8.527048567343234]
MR画像分割は,多くの臨床応用において重要な役割を担っている。
ディープラーニング(DL)は、最近、様々な画像セグメンテーションタスクにおいて最先端または人間レベルのパフォーマンスを達成した。
本研究では,前立腺MR画像セグメンテーションのための半教師付き,自己教師型協調学習フレームワークを訓練することを目的とする。
論文 参考訳(メタデータ) (2022-11-16T11:40:13Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-06-01T09:20:30Z) - Exemplar Learning for Medical Image Segmentation [38.61378161105941]
医用画像セグメンテーションのためのempllar Learning-based Synthesis Net (ELSNet) フレームワークを提案する。
ELSNetはイメージセグメンテーションのための2つの新しいモジュールを導入している。
いくつかの臓器セグメント化データセットの実験を行い,詳細な解析を行った。
論文 参考訳(メタデータ) (2022-04-03T00:10:06Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Suggestive Annotation of Brain Tumour Images with Gradient-guided
Sampling [14.092503407739422]
本稿では,脳腫瘍画像に対する効率的なアノテーションフレームワークを提案する。
実験によると、BraTS 2019データセットから、わずか19%の注釈付き患者スキャンでセグメンテーションモデルをトレーニングすることは、腫瘍セグメンテーションタスク全体のデータセット上でモデルをトレーニングするのと同等のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2020-06-26T13:39:49Z) - Unified Representation Learning for Efficient Medical Image Analysis [0.623075162128532]
統一モダリティ特化特徴表現(UMS-Rep)を用いた医用画像解析のためのマルチタスクトレーニング手法を提案する。
提案手法は,計算資源の全体的な需要を減らし,タスクの一般化と性能の向上を図っている。
論文 参考訳(メタデータ) (2020-06-19T16:52:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。