Examining the behaviour of state-of-the-art convolutional neural
networks for brain tumor detection with and without transfer learning
- URL: http://arxiv.org/abs/2206.01735v1
- Date: Thu, 2 Jun 2022 18:49:28 GMT
- Title: Examining the behaviour of state-of-the-art convolutional neural
networks for brain tumor detection with and without transfer learning
- Authors: Md. Atik Ahamed, Rabeya Tus Sadia
- Abstract summary: Two different kinds of dataset are investigated using state-of-the-art CNN models in this research work.
The EfficientNet-B5 architecture outperforms all the state-of-the-art models in the binary-classification dataset with the accuracy of 99.75% and 98.61% accuracy for the multi-class dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distinguishing normal from malignant and determining the tumor type are
critical components of brain tumor diagnosis. Two different kinds of dataset
are investigated using state-of-the-art CNN models in this research work. One
dataset(binary) has images of normal and tumor types, while
another(multi-class) provides all images of tumors classified as glioma,
meningioma, or pituitary. The experiments were conducted in these dataset with
transfer learning from pre-trained weights from ImageNet as well as
initializing the weights randomly. The experimental environment is equivalent
for all models in this study in order to make a fair comparison. For both of
the dataset, the validation set are same for all the models where train data is
60% while the rest is 40% for validation. With the proposed techniques in this
research, the EfficientNet-B5 architecture outperforms all the state-of-the-art
models in the binary-classification dataset with the accuracy of 99.75% and
98.61% accuracy for the multi-class dataset. This research also demonstrates
the behaviour of convergence of validation loss in different weight
initialization techniques.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Osteosarcoma Tumor Detection using Transfer Learning Models [0.0]
This paper studies the performance of transfer learning models for osteosarcoma tumour detection.
InceptionResNetV2 achieved the highest accuracy (93.29%), followed by NasNetLarge (90.91%), ResNet50 (89.83%) and EfficientNetB7 (62.77%)
arXiv Detail & Related papers (2023-05-16T17:58:29Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - A Novel Framework for Brain Tumor Detection Based on Convolutional
Variational Generative Models [6.726255259929498]
This paper introduces a novel framework for brain tumor detection and classification.
The proposed framework acquires an overall detection accuracy of 96.88%.
It highlights the promise of the proposed framework as an accurate low-overhead brain tumor detection system.
arXiv Detail & Related papers (2022-02-20T16:14:01Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Brain Tumor Anomaly Detection via Latent Regularized Adversarial Network [34.81845999071626]
We propose an innovative brain tumor abnormality detection algorithm.
The semi-supervised anomaly detection model is proposed in which only healthy (normal) brain images are trained.
arXiv Detail & Related papers (2020-07-09T12:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.