論文の概要: Mutual- and Self- Prototype Alignment for Semi-supervised Medical Image
Segmentation
- arxiv url: http://arxiv.org/abs/2206.01739v1
- Date: Fri, 3 Jun 2022 02:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 17:15:12.259510
- Title: Mutual- and Self- Prototype Alignment for Semi-supervised Medical Image
Segmentation
- Title(参考訳): 半教師付き医用画像分割のための相互および自己プロトタイプアライメント
- Authors: Zhenxi Zhang, Chunna Tian, Zhicheng Jiao
- Abstract要約: ラベルのないデータをよりよく活用するための相互・自己プロトタイプアライメント(MSPA)フレームワークを提案する。
具体的には、相互プロトタイプアライメントはラベル付きデータとラベルなしデータの間の情報相互作用を強化する。
また,提案手法は,3つのデータセットに対して,最先端の半教師付きセグメンテーション手法を7つ上回っている。
- 参考スコア(独自算出の注目度): 5.426994893258762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning methods have been explored in medical image
segmentation tasks due to the scarcity of pixel-level annotation in the real
scenario. Proto-type alignment based consistency constraint is an intuitional
and plausible solu-tion to explore the useful information in the unlabeled
data. In this paper, we propose a mutual- and self- prototype alignment (MSPA)
framework to better utilize the unlabeled data. In specific, mutual-prototype
alignment enhances the information interaction between labeled and unlabeled
data. The mutual-prototype alignment imposes two consistency constraints in
reverse directions between the unlabeled and labeled data, which enables the
consistent embedding and model discriminability on unlabeled data. The proposed
self-prototype alignment learns more stable region-wise features within
unlabeled images, which optimizes the classification margin in semi-supervised
segmentation by boosting the intra-class compactness and inter-class separation
on the feature space. Extensive experimental results on three medical datasets
demonstrate that with a small amount of labeled data, MSPA achieves large
improvements by leveraging the unlabeled data. Our method also outperforms
seven state-of-the-art semi-supervised segmentation methods on all three
datasets.
- Abstract(参考訳): 医用画像分割作業において,実シナリオにおける画素レベルのアノテーションの不足により,半教師付き学習手法が検討されている。
プロト型アライメントに基づく一貫性制約は、ラベルなしデータの有用な情報を調べるための直観的かつ妥当なソルルメントである。
本稿では、ラベルのないデータをよりよく活用するための相互・自己プロトタイプアライメント(MSPA)フレームワークを提案する。
具体的には、相互プロトタイプアライメントはラベル付きデータとラベルなしデータの間の情報相互作用を強化する。
相互プロトタイプアライメントはラベルなしデータとラベル付きデータの逆方向に2つの一貫性制約を課し、ラベルなしデータに対する一貫性のある埋め込みとモデルの識別を可能にする。
提案した自己プロトタイプアライメントは、半教師付きセグメンテーションにおける分類マージンを最適化し、特徴空間上のクラス内コンパクト性を高め、クラス間分離する。
3つの医療データセットに関する広範な実験の結果は、少量のラベル付きデータによって、mspaがラベル付きデータを活用することで大きな改善を達成していることを示している。
また,提案手法は,3つのデータセットに対して,最先端の半教師付きセグメンテーション手法を7つ上回っている。
関連論文リスト
- SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
医用画像分割のための半教師付き学習(SSL)は難しいが、非常に実践的な課題である。
セムシム(SemSim)という名前のFixMatchに基づく新しいフレームワークを提案する。
SemSimは3つの公開セグメンテーションベンチマークで最先端の手法よりも一貫した改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T12:31:37Z) - Labeled-to-Unlabeled Distribution Alignment for Partially-Supervised Multi-Organ Medical Image Segmentation [30.953837550398884]
部分教師付き多臓器画像セグメンテーションは統合意味セグメンテーションモデルの構築を目的としている。
本稿では,特徴分布を調整し,識別能力を向上するラベル付き非ラベル分布アライメントフレームワークを提案する。
提案手法は,最先端部分教師方式よりもかなりのマージンで性能を向上する。
論文 参考訳(メタデータ) (2024-09-05T03:55:37Z) - GuidedNet: Semi-Supervised Multi-Organ Segmentation via Labeled Data Guide Unlabeled Data [4.775846640214768]
半監督型多臓器画像分割は、医師が疾患の診断と治療計画を改善するのに役立つ。
キーとなる概念は、ラベル付きデータとラベルなしデータからのボクセル機能は、同じクラスに属する可能性が高い機能空間で互いに近接しているということである。
我々は、ラベル付きデータから得られた事前知識を活用してラベルなしデータのトレーニングをガイドする知識伝達クロス擬似ラベルスーパービジョン(KT-CPS)戦略を導入する。
論文 参考訳(メタデータ) (2024-08-09T07:46:01Z) - Leveraging Fixed and Dynamic Pseudo-labels for Semi-supervised Medical Image Segmentation [7.9449756510822915]
半教師付き医用画像セグメンテーションは、注釈のないデータを利用する能力によって、関心が高まりつつある。
現在の最先端の手法は、主にコトレーニングフレームワーク内の擬似ラベルに依存している。
本稿では,同一の未注釈画像に対する複数の擬似ラベルを用いてラベルのないデータから学習する手法を提案する。
論文 参考訳(メタデータ) (2024-05-12T11:30:01Z) - Correlation-Aware Mutual Learning for Semi-supervised Medical Image
Segmentation [5.045813144375637]
既存の半教師付きセグメンテーション手法の多くは、ラベルのないデータから情報を取り出すことのみに焦点を当てている。
本稿では,ラベル付きデータを利用してラベル付きデータから情報を抽出する相関学習フレームワークを提案する。
提案手法は,CMA(Cross-sample Mutual Attention Module)とOCC(Omni-Correlation Consistency Module)の2つのモジュールを組み込んだ相互学習戦略に基づいている。
論文 参考訳(メタデータ) (2023-07-12T17:20:05Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
半教師付きセマンティックセマンティックセグメンテーションのための新しい手法である GuidedMix-Net を提案する。
ラベル付き情報を使用して、ラベルなしのインスタンスの学習をガイドする。
競合セグメンテーションの精度を達成し、mIoUを以前のアプローチに比べて+7$%大きく改善する。
論文 参考訳(メタデータ) (2021-12-28T06:48:03Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
腹部臓器分節の文脈におけるラベルの重複から学ぶためのいくつかの方法を提案する。
半教師付きアプローチと適応的クロスエントロピー損失を組み合わせることで、不均一な注釈付きデータをうまく活用できることが判明した。
論文 参考訳(メタデータ) (2021-07-13T09:22:24Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
半教師付きセマンティックセマンティックセグメンテーションのための新しい手法である GuidedMix-Net を提案する。
まず、ラベル付きデータとラベルなしデータの間に特徴アライメントの目的を導入し、類似した画像対をキャプチャする。
MITransは、ラベルなしデータのさらなるプログレッシブな精細化のための強力な知識モジュールであることが示されている。
ラベル付きデータに対する教師付き学習とともに、ラベル付きデータの予測が生成した擬似マスクとともに学習される。
論文 参考訳(メタデータ) (2021-06-29T02:48:45Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。