論文の概要: SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low
Dimensional Space
- arxiv url: http://arxiv.org/abs/2206.01867v1
- Date: Sat, 4 Jun 2022 00:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 16:25:13.257047
- Title: SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low
Dimensional Space
- Title(参考訳): spgnet:低次元空間における空間投影誘導3次元人間のポーズ推定
- Authors: Zihan Wang, Ruimin Chen, Mengxuan Liu, Guanfang Dong and Anup Basu
- Abstract要約: 本研究では,多次元再投影と教師あり学習を混合した3次元人間のポーズ推定手法を提案する。
提案手法は,データセットHuman3.6Mの推定結果に基づいて,定性的にも定量的にも,多くの最先端手法より優れている。
- 参考スコア(独自算出の注目度): 14.81199315166042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method SPGNet for 3D human pose estimation that mixes
multi-dimensional re-projection into supervised learning. In this method, the
2D-to-3D-lifting network predicts the global position and coordinates of the 3D
human pose. Then, we re-project the estimated 3D pose back to the 2D key points
along with spatial adjustments. The loss functions compare the estimated 3D
pose with the 3D pose ground truth, and re-projected 2D pose with the input 2D
pose. In addition, we propose a kinematic constraint to restrict the predicted
target with constant human bone length. Based on the estimation results for the
dataset Human3.6M, our approach outperforms many state-of-the-art methods both
qualitatively and quantitatively.
- Abstract(参考訳): 本研究では,多次元再投影を教師あり学習に混合した3次元ポーズ推定法を提案する。
この方法では,2D-to-3Dリフトネットワークは3次元人間のポーズのグローバルな位置と座標を予測する。
次に,推定した3Dポーズを空間的調整とともに2Dキーポイントに再投影する。
損失関数は、推定3dポーズと3dポーズグラウンド真理を比較し、入力2dポーズと再投影2dポーズを比較する。
さらに, 予測対象の骨長を一定に制限する運動学的制約を提案する。
データセットのヒューマン3.6mの推定結果に基づいて,本手法は定性的および定量的に多くの最先端手法を上回る。
関連論文リスト
- MPL: Lifting 3D Human Pose from Multi-view 2D Poses [75.26416079541723]
本稿では,大規模かつリッチなトレーニングデータセットが存在する2次元ポーズ推定と,トランスフォーマーネットワークを用いた2次元から3次元ポーズリフトを提案する。
実験の結果,MPJPEの誤差は2次元ポーズを三角測量した3次元ポーズと比較して最大45%減少することがわかった。
論文 参考訳(メタデータ) (2024-08-20T12:55:14Z) - Unsupervised Multi-Person 3D Human Pose Estimation From 2D Poses Alone [4.648549457266638]
本研究は,教師なし多人数2D-3Dポーズ推定の実現可能性について検討した最初の研究の1つである。
本手法では,各被験者の2次元ポーズを3次元に独立に持ち上げ,それらを共有3次元座標系で組み合わせる。
これにより、ポーズの正確な3D再構成を検索することができる。
論文 参考訳(メタデータ) (2023-09-26T11:42:56Z) - MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcanは、3D人間のポーズ推定、クラッドされた2Dポーズからの3Dポーズ推定、3Dポーズ完了をtextocbsingleフレームワークで処理する。
MPI-INF-3DHPにおいて、広く使われているポーズデータセットの広範な実験とアブレーション研究を行い、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-06-29T10:30:00Z) - Learning to Estimate 3D Human Pose from Point Cloud [13.27496851711973]
本稿では,複雑な人体構造物の表面をモデル化するための入力データとして,点雲データを用いた3次元ポーズ推定のための深層人体ポーズネットワークを提案する。
2つの公開データセットに対する実験により,従来の最先端手法よりも精度が高いことを示す。
論文 参考訳(メタデータ) (2022-12-25T14:22:01Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
本稿では,学習向きのみを用いて3次元ポーズを頑健に推定できる新しいPose Orientation Net(PONet)を提案する。
PONetは、局所的な画像証拠を利用して、これらの手足の3D方向を推定し、3Dポーズを復元する。
我々は,Human3.6M,MPII,MPI-INF-3DHP,3DPWを含む複数のデータセットについて評価を行った。
論文 参考訳(メタデータ) (2021-12-21T12:48:48Z) - Lifting 2D Human Pose to 3D with Domain Adapted 3D Body Concept [49.49032810966848]
既存の3Dポーズ推定は,1)2Dデータと3Dデータとのあいまいさ,2)よくラベル付けされた2D-3Dポーズペアの欠如に悩まされている。
本研究では,人体の3次元概念を学習するためにラベル付き3次元ポーズを利用する新しい枠組みを提案する。
2つのドメインに適応することにより、3Dポーズから学んだ身体知識を2Dポーズに適用し、2Dポーズエンコーダを誘導し、ポーズリフトに埋め込まれた情報的な3D"想像"を生成する。
論文 参考訳(メタデータ) (2021-11-23T16:02:12Z) - SVMA: A GAN-based model for Monocular 3D Human Pose Estimation [0.8379286663107844]
1枚の画像から抽出した2次元関節位置から3次元人間のポーズを復元するための教師なしGANモデルを提案する。
再投射制約を考慮すると,本モデルはカメラを推定し,推定された3次元ポーズを元の2次元ポーズに再投射することができる。
Human3.6Mの結果,本手法は最先端の手法を全て上回り,MPI-INF-3DHPの手法は最先端の手法を約15.0%上回ることがわかった。
論文 参考訳(メタデータ) (2021-06-10T09:43:57Z) - Weakly-supervised Cross-view 3D Human Pose Estimation [16.045255544594625]
弱教師付きクロスビュー3次元ポーズ推定のための簡易かつ効果的なパイプラインを提案する。
本手法は,最先端の性能を弱い教師付きで達成することができる。
本手法を標準ベンチマークデータセットHuman3.6Mで評価する。
論文 参考訳(メタデータ) (2021-05-23T08:16:25Z) - 3DCrowdNet: 2D Human Pose-Guided3D Crowd Human Pose and Shape Estimation
in the Wild [61.92656990496212]
3DCrowdNetは、2D人間のポーズガイド3D群衆ポーズと形状推定システムです。
我々の3DCrowdNetは、これまでのクラウドシーンの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-15T08:21:28Z) - Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose
Estimation [18.103595280706593]
我々は,CNNによる信頼度の高い2次元ポーズ推定の最近の進歩を活用し,深度画像から人物の3次元ポーズを推定する。
提案手法は2つの公開データセットの精度と速度の両面で非常に競争力のある結果が得られる。
論文 参考訳(メタデータ) (2020-11-10T10:08:13Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
多視点画像と人手足に装着したIMUから3次元人間のポーズを推定する。
まず2つの信号から2Dのポーズを検出し、3D空間に持ち上げる。
単純な2段階のアプローチは、公開データセット上の大きなマージンによる最先端のエラーを低減する。
論文 参考訳(メタデータ) (2020-03-25T00:26:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。