論文の概要: Learning to Estimate 3D Human Pose from Point Cloud
- arxiv url: http://arxiv.org/abs/2212.12910v1
- Date: Sun, 25 Dec 2022 14:22:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 15:18:22.477040
- Title: Learning to Estimate 3D Human Pose from Point Cloud
- Title(参考訳): ポイントクラウドから3次元人間のポーズを推定する学習
- Authors: Yufan Zhou, Haiwei Dong, and Abdulmotaleb El Saddik
- Abstract要約: 本稿では,複雑な人体構造物の表面をモデル化するための入力データとして,点雲データを用いた3次元ポーズ推定のための深層人体ポーズネットワークを提案する。
2つの公開データセットに対する実験により,従来の最先端手法よりも精度が高いことを示す。
- 参考スコア(独自算出の注目度): 13.27496851711973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D pose estimation is a challenging problem in computer vision. Most of the
existing neural-network-based approaches address color or depth images through
convolution networks (CNNs). In this paper, we study the task of 3D human pose
estimation from depth images. Different from the existing CNN-based human pose
estimation method, we propose a deep human pose network for 3D pose estimation
by taking the point cloud data as input data to model the surface of complex
human structures. We first cast the 3D human pose estimation from 2D depth
images to 3D point clouds and directly predict the 3D joint position. Our
experiments on two public datasets show that our approach achieves higher
accuracy than previous state-of-art methods. The reported results on both ITOP
and EVAL datasets demonstrate the effectiveness of our method on the targeted
tasks.
- Abstract(参考訳): 3Dポーズ推定はコンピュータビジョンにおいて難しい問題である。
既存のニューラルネットワークベースのアプローチのほとんどは、畳み込みネットワーク(CNN)を通じて色や深度の画像に対処する。
本稿では,深度画像からの3次元ポーズ推定の課題について検討する。
既存のcnnに基づく人格推定法と異なり,ポイントクラウドデータを入力データとして,複雑な人格構造の表面をモデル化し,3次元ポーズ推定のための深層人格ネットワークを提案する。
まず,2次元深度画像から3次元点雲への3次元人物ポーズ推定を行い,直接3次元関節位置を予測した。
2つの公開データセットに対する実験により,従来の最先端手法よりも精度が高いことを示す。
ITOPとEVALの両方のデータセットで報告された結果から,本手法が対象タスクに与える影響が示された。
関連論文リスト
- Decanus to Legatus: Synthetic training for 2D-3D human pose lifting [26.108023246654646]
10個の手作り3Dポーズ(Decanus)に基づく3Dポーズ分布から無限個の合成人間のポーズ(Legatus)を生成するアルゴリズムを提案する。
この結果から,特定データセットの実際のデータを用いた手法に匹敵する3次元ポーズ推定性能を,ゼロショット設定で実現し,フレームワークの可能性を示した。
論文 参考訳(メタデータ) (2022-10-05T13:10:19Z) - SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low
Dimensional Space [14.81199315166042]
本研究では,多次元再投影と教師あり学習を混合した3次元人間のポーズ推定手法を提案する。
提案手法は,データセットHuman3.6Mの推定結果に基づいて,定性的にも定量的にも,多くの最先端手法より優れている。
論文 参考訳(メタデータ) (2022-06-04T00:51:00Z) - PedRecNet: Multi-task deep neural network for full 3D human pose and
orientation estimation [0.0]
マルチタスクネットワークは、様々なディープニューラルネットワークベースの歩行者検出機能をサポートしている。
ネットワークアーキテクチャは比較的単純だが強力であり、さらなる研究や応用にも容易に適応できる。
論文 参考訳(メタデータ) (2022-04-25T10:47:01Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
本稿では,学習向きのみを用いて3次元ポーズを頑健に推定できる新しいPose Orientation Net(PONet)を提案する。
PONetは、局所的な画像証拠を利用して、これらの手足の3D方向を推定し、3Dポーズを復元する。
我々は,Human3.6M,MPII,MPI-INF-3DHP,3DPWを含む複数のデータセットについて評価を行った。
論文 参考訳(メタデータ) (2021-12-21T12:48:48Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
自己監督型3次元ポーズ推定のための簡易かつ効果的なアプローチを提案する。
我々は、マルチビューカメラシステムの2Dボディポーズ推定を三角測量に頼っている。
提案手法はHuman3.6MとMPI-INF-3DHPベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-10-14T17:40:45Z) - Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose
Estimation [18.103595280706593]
我々は,CNNによる信頼度の高い2次元ポーズ推定の最近の進歩を活用し,深度画像から人物の3次元ポーズを推定する。
提案手法は2つの公開データセットの精度と速度の両面で非常に競争力のある結果が得られる。
論文 参考訳(メタデータ) (2020-11-10T10:08:13Z) - Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh
Recovery from a 2D Human Pose [70.23652933572647]
本稿では,人間のメッシュ頂点の3次元座標を直接推定するグラフ畳み込みニューラルネットワーク(GraphCNN)を提案する。
我々のPose2Meshは、様々なベンチマークデータセットにおいて、以前の3次元人間のポーズとメッシュ推定方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-20T16:01:56Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
深層表現学習は単眼の3次元ポーズ推定において顕著な精度を達成した。
本稿では,大量のトレーニングデータに対してスケーラブルな新しいデータ拡張手法を提案する。
本手法は,先行知識に触発された階層的人体表現と合成に基づいて,未知の3次元人体骨格を合成する。
論文 参考訳(メタデータ) (2020-06-14T03:09:52Z) - Towards Generalization of 3D Human Pose Estimation In The Wild [73.19542580408971]
3DBodyTex.Poseは、3Dの人間のポーズ推定のタスクに対処するデータセットである。
3DBodyTex.Poseは、さまざまな衣服やポーズで405種類の実際の被写体を含む高品質でリッチなデータを提供する。
論文 参考訳(メタデータ) (2020-04-21T13:31:58Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
ラベルのないビデオフレームからバリエーションを分離する自己教師付き学習フレームワークを提案する。
3Dポーズと空間部分マップの表現ギャップを埋める、微分可能な形式化により、多様なカメラの動きを持つビデオで操作できる。
論文 参考訳(メタデータ) (2020-04-09T07:55:01Z) - HandVoxNet: Deep Voxel-Based Network for 3D Hand Shape and Pose
Estimation from a Single Depth Map [72.93634777578336]
弱教師付き方式で3次元畳み込みを訓練した新しいアーキテクチャを提案する。
提案されたアプローチは、SynHand5Mデータセット上で、アートの状態を47.8%改善する。
我々の手法は、NYUとBigHand2.2Mデータセットで視覚的により合理的で現実的な手形を生成する。
論文 参考訳(メタデータ) (2020-04-03T14:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。