論文の概要: Investigating Brain Connectivity with Graph Neural Networks and
GNNExplainer
- arxiv url: http://arxiv.org/abs/2206.01930v1
- Date: Sat, 4 Jun 2022 07:47:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 17:36:55.333810
- Title: Investigating Brain Connectivity with Graph Neural Networks and
GNNExplainer
- Title(参考訳): グラフニューラルネットワークとGNNExplainerによる脳結合性の調査
- Authors: Maksim Zhdanov, Saskia Steinmann and Nico Hoffmann
- Abstract要約: 我々は,ディープラーニングによる音声聴取作業において,機能的接続性の詳細な検討を行った。
本稿では,脳波データをグラフ領域の信号として表現するグラフニューラルネットワークに基づくフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional connectivity plays an essential role in modern neuroscience. The
modality sheds light on the brain's functional and structural aspects,
including mechanisms behind multiple pathologies. One such pathology is
schizophrenia which is often followed by auditory verbal hallucinations. The
latter is commonly studied by observing functional connectivity during speech
processing. In this work, we have made a step toward an in-depth examination of
functional connectivity during a dichotic listening task via deep learning for
three groups of people: schizophrenia patients with and without auditory verbal
hallucinations and healthy controls. We propose a graph neural network-based
framework within which we represent EEG data as signals in the graph domain.
The framework allows one to 1) predict a brain mental disorder based on EEG
recording, 2) differentiate the listening state from the resting state for each
group and 3) recognize characteristic task-depending connectivity. Experimental
results show that the proposed model can differentiate between the above groups
with state-of-the-art performance. Besides, it provides a researcher with
meaningful information regarding each group's functional connectivity, which we
validated on the current domain knowledge.
- Abstract(参考訳): 機能的接続は現代の神経科学において重要な役割を担っている。
モダリティは、複数の病理の背後にあるメカニズムを含む、脳の機能的および構造的側面に光を放つ。
そのような病理の1つは統合失調症であり、しばしば聴覚の幻覚が続く。
後者は、音声処理中に機能的接続を観測することでよく研究される。
本研究は,統合失調症患者の聴覚的幻覚と健康管理の3つのグループを対象とした,ディープラーニングによる音声聴取作業における機能的接続性について,より深く検討した。
本稿では,脳波データをグラフ領域の信号として表現するグラフニューラルネットワークに基づくフレームワークを提案する。
フレームワークによって
1)脳波記録に基づく脳心疾患の予測
2)各グループにおける聞き取り状態と休息状態とを区別する。
3) タスク依存接続の特徴を認識する。
実験結果から,提案モデルでは上記のグループを最先端の性能で区別できることがわかった。
さらに、研究者に各グループの機能的接続に関する有意義な情報を提供し、現在のドメイン知識に基づいて検証した。
関連論文リスト
- CrEIMBO: Cross Ensemble Interactions in Multi-view Brain Observations [3.3713037259290255]
CrEIMBO (Cross-Ensemble Interactions in Multi-view Brain Observations) は、セッションごとの神経アンサンブルの構成を同定する。
CrEIMBOはセッション固有とグローバルな(セッション不変)計算を区別し、異なるサブ回路がアクティブであるかを探索する。
合成データ中の真理成分を復元し、意味のある脳動力学を明らかにするCrEIMBOの能力を実証する。
論文 参考訳(メタデータ) (2024-05-27T17:48:32Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
我々は脳を機能的ネットワークとしてモデル化できることを示し,ADHD被験者と制御対象とではネットワークの特定の特性が異なることを示した。
776名の被験者で分類器を訓練し,ADHD-200チャレンジのために神経局が提供する171名の被験者を対象に試験を行った。
論文 参考訳(メタデータ) (2023-06-15T16:22:57Z) - A Network Theory Investigation into the Altered Resting State Functional
Connectivity in Attention-Deficit Hyperactivity Disorder [1.3416169841532526]
fMRIは、様々な神経心理学的機能を実行している間に、健康で病理的な脳の研究を可能にする。
最近のニューロイメージング研究は、グラフやネットワークの観点から脳活動のモデリングと分析が増加している。
本研究の目的は、注意欠陥高活動障害(ADHD)を有する成人における安静時脳機能異常について検討することである。
論文 参考訳(メタデータ) (2022-11-23T00:35:16Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
本稿では、障害特異的な関心領域(ROI)と顕著なつながりを分析するための解釈可能なフレームワークを提案する。
提案するフレームワークは,脳ネットワーク指向の疾患予測のためのバックボーンモデルと,グローバルに共有された説明生成装置の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2022-06-30T08:02:05Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
本稿では、領域マップされたfMRIシーケンスと構造接続性の両方を入力として組み込んだ効率的なグラフニューラルネットワークモデルを構築する。
サンプルレベルの適応的隣接行列を学習することで、潜伏する脳のダイナミクスのよい表現を見つけ出す。
これらのモジュールは容易に適応でき、神経科学領域以外の用途にも有用である可能性がある。
論文 参考訳(メタデータ) (2022-05-23T21:57:31Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
本稿では,学習可能なフィルタと事前決定された特徴抽出モジュールからなる新しい識別可能なEEGデコーディングパイプラインを提案する。
我々は,SEEDデータセットおよび前例のない大きさの新たな脳波データセット上で,脳波信号からの感情認識に向けたモデルの有用性を実証する。
発見された特徴は、以前の神経科学の研究と一致し、音楽聴取中の左右の時間領域間の機能的接続プロファイルの顕著な相違など、新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-10-19T14:22:04Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
本稿では,脳コネクトームの動的グラフ表現を時間的注意とともに学習するSTAGINを提案する。
HCP-RestとHCP-Taskデータセットの実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-05-27T23:06:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。