Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering
- URL: http://arxiv.org/abs/2206.02027v1
- Date: Sat, 4 Jun 2022 17:16:09 GMT
- Title: Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering
- Authors: Tin Vla\v{s}i\'c, Hieu Nguyen, Ivan Dokmani\'c
- Abstract summary: Implicit representation of shapes as level sets of multilayer perceptrons has recently flourished in different shape analysis, compression, and reconstruction tasks.
We introduce an implicit neural representation-based framework for solving the inverse obstacle scattering problem in a mesh-free fashion.
- Score: 21.459567997723376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit representation of shapes as level sets of multilayer perceptrons has
recently flourished in different shape analysis, compression, and
reconstruction tasks. In this paper, we introduce an implicit neural
representation-based framework for solving the inverse obstacle scattering
problem in a mesh-free fashion. We efficiently express the obstacle shape as
the zero-level set of a signed distance function which is implicitly determined
by a small number of network parameters. To solve the direct scattering
problem, we implement the implicit boundary integral method. It uses
projections of the grid points in the tubular neighborhood onto the boundary to
compute the PDE solution instead of a grid-size-dependent extraction method of
surface points such as Marching Cubes. The implicit representation conveniently
handles the shape perturbation in the optimization process. To update the
shape, we use PyTorch's automatic differentiation to backpropagate the loss
function w.r.t. the network parameters, allowing us to avoid complex and
error-prone manual derivation of the shape derivative. The proposed framework
makes the inverse scattering problem more tractable with fewer parameters to
optimize in comparison to the memory-inefficient grid-based approaches and
outputs high-quality reconstruction results.
Related papers
- A neural network approach for solving the Monge-Ampère equation with transport boundary condition [0.0]
This paper introduces a novel neural network-based approach to solving the Monge-Ampere equation with the transport boundary condition.
We leverage multilayer perceptron networks to learn approximate solutions by minimizing a loss function that encompasses the equation's residual, boundary conditions, and convexity constraints.
arXiv Detail & Related papers (2024-10-25T11:54:00Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation [0.0]
A neural network architecture is presented to solve high-dimensional parameter-dependent partial differential equations (pPDEs)
It is constructed to map parameters of the model data to corresponding finite element solutions.
It outputs a coarse grid solution and a series of corrections as produced in an adaptive finite element method (AFEM)
arXiv Detail & Related papers (2024-03-19T11:34:40Z) - Multilevel CNNs for Parametric PDEs [0.0]
We combine concepts from multilevel solvers for partial differential equations with neural network based deep learning.
An in-depth theoretical analysis shows that the proposed architecture is able to approximate multigrid V-cycles to arbitrary precision.
We find substantial improvements over state-of-the-art deep learning-based solvers.
arXiv Detail & Related papers (2023-04-01T21:11:05Z) - Towards a machine learning pipeline in reduced order modelling for
inverse problems: neural networks for boundary parametrization,
dimensionality reduction and solution manifold approximation [0.0]
Inverse problems, especially in a partial differential equation context, require a huge computational load.
We apply a numerical pipeline that involves artificial neural networks to parametrize the boundary conditions of the problem in hand.
It derives a general framework capable to provide an ad-hoc parametrization of the inlet boundary and quickly converges to the optimal solution.
arXiv Detail & Related papers (2022-10-26T14:53:07Z) - Shape As Points: A Differentiable Poisson Solver [118.12466580918172]
In this paper, we introduce a differentiable point-to-mesh layer using a differentiable formulation of Poisson Surface Reconstruction (PSR)
The differentiable PSR layer allows us to efficiently and differentiably bridge the explicit 3D point representation with the 3D mesh via the implicit indicator field.
Compared to neural implicit representations, our Shape-As-Points (SAP) model is more interpretable, lightweight, and accelerates inference time by one order of magnitude.
arXiv Detail & Related papers (2021-06-07T09:28:38Z) - De-homogenization using Convolutional Neural Networks [1.0323063834827415]
This paper presents a deep learning-based de-homogenization method for structural compliance minimization.
For an appropriate choice of parameters, the de-homogenized designs perform within $7-25%$ of the homogenization-based solution.
arXiv Detail & Related papers (2021-05-10T09:50:06Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.