Bayesian Model Averaging for Data Driven Decision Making when Causality
is Partially Known
- URL: http://arxiv.org/abs/2105.05395v1
- Date: Wed, 12 May 2021 01:55:45 GMT
- Title: Bayesian Model Averaging for Data Driven Decision Making when Causality
is Partially Known
- Authors: Marios Papamichalis, Abhishek Ray, Ilias Bilionis, Karthik Kannan,
Rajiv Krishnamurthy
- Abstract summary: We use ensemble methods like Bayesian Model Averaging (BMA) to infer set of causal graphs.
We provide decisions by computing the expected value and risk of potential interventions explicitly.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Probabilistic machine learning models are often insufficient to help with
decisions on interventions because those models find correlations - not causal
relationships. If observational data is only available and experimentation are
infeasible, the correct approach to study the impact of an intervention is to
invoke Pearl's causality framework. Even that framework assumes that the
underlying causal graph is known, which is seldom the case in practice. When
the causal structure is not known, one may use out-of-the-box algorithms to
find causal dependencies from observational data. However, there exists no
method that also accounts for the decision-maker's prior knowledge when
developing the causal structure either. The objective of this paper is to
develop rational approaches for making decisions from observational data in the
presence of causal graph uncertainty and prior knowledge from the
decision-maker. We use ensemble methods like Bayesian Model Averaging (BMA) to
infer set of causal graphs that can represent the data generation process. We
provide decisions by computing the expected value and risk of potential
interventions explicitly. We demonstrate our approach by applying them in
different example contexts.
Related papers
- Identifiability Guarantees for Causal Disentanglement from Purely Observational Data [10.482728002416348]
Causal disentanglement aims to learn about latent causal factors behind data.
Recent advances establish identifiability results assuming that interventions on (single) latent factors are available.
We provide a precise characterization of latent factors that can be identified in nonlinear causal models.
arXiv Detail & Related papers (2024-10-31T04:18:29Z) - CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOIT is a causal discovery method to reconstruct causal models using both observational and interventional data.
The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics.
A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub.
arXiv Detail & Related papers (2024-10-03T13:57:08Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.