論文の概要: Anomaly Detection with Test Time Augmentation and Consistency Evaluation
- arxiv url: http://arxiv.org/abs/2206.02345v1
- Date: Mon, 6 Jun 2022 04:27:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 14:05:46.035002
- Title: Anomaly Detection with Test Time Augmentation and Consistency Evaluation
- Title(参考訳): テスト時間増強による異常検出と一貫性評価
- Authors: Haowei He, Jiaye Teng, Yang Yuan
- Abstract要約: 本稿では,TTA-AD(Test Time Augmentation Anomaly Detection)と呼ばれる簡易かつ効果的な異常検出アルゴリズムを提案する。
我々は、分散データよりもトレーニングされたネットワーク上でのオリジナルバージョンと拡張バージョンについて、分散データの方が一貫性のある予測を楽しむことを観察した。
様々な高解像度画像ベンチマークデータセットの実験は、TTA-ADが同等またはより良い検出性能を達成することを示した。
- 参考スコア(独自算出の注目度): 13.709281244889691
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks are known to be vulnerable to unseen data: they may
wrongly assign high confidence stcores to out-distribuion samples. Recent works
try to solve the problem using representation learning methods and specific
metrics. In this paper, we propose a simple, yet effective post-hoc anomaly
detection algorithm named Test Time Augmentation Anomaly Detection (TTA-AD),
inspired by a novel observation. Specifically, we observe that in-distribution
data enjoy more consistent predictions for its original and augmented versions
on a trained network than out-distribution data, which separates
in-distribution and out-distribution samples. Experiments on various
high-resolution image benchmark datasets demonstrate that TTA-AD achieves
comparable or better detection performance under dataset-vs-dataset anomaly
detection settings with a 60%~90\% running time reduction of existing
classifier-based algorithms. We provide empirical verification that the key to
TTA-AD lies in the remaining classes between augmented features, which has long
been partially ignored by previous works. Additionally, we use RUNS as a
surrogate to analyze our algorithm theoretically.
- Abstract(参考訳): ディープニューラルネットワークは、目に見えないデータに対して脆弱であることが知られている。
近年の研究では、表現学習法と特定のメトリクスを用いて問題解決が試みられている。
本稿では,新しい観測結果にインスパイアされた簡易かつ効果的なポストホック異常検出アルゴリズムであるテスト時間拡張異常検出(tta-ad)を提案する。
具体的には、分布内データと分布外データとを分離した分布外データよりも、トレーニングされたネットワーク上での本来のバージョンと拡張バージョンの一貫性のある予測が期待できる。
様々な高解像度画像ベンチマークデータセットの実験により、TTA-ADはデータセット-vsデータセット異常検出設定において、既存の分類器ベースのアルゴリズムの実行時間60%から90%の削減で同等またはより良い検出性能を達成することが示された。
我々はTTA-ADの鍵が拡張機能の間の残りのクラスにあることを実証的に検証する。
さらに、RUNSを代用として、理論的にアルゴリズムを解析する。
関連論文リスト
- TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
本研究では,時間変動型オートエンコーダ(TeVAE)を提案する。
適切に設定された場合、TeVAEは異常を6%だけ間違ったタイミングでフラグし、65%の異常を検知する。
論文 参考訳(メタデータ) (2024-07-09T13:32:33Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - Little Help Makes a Big Difference: Leveraging Active Learning to
Improve Unsupervised Time Series Anomaly Detection [2.1684857243537334]
予期せぬネットワークインシデントを検出するために,多数の異常検出アルゴリズムがデプロイされている。
教師なし異常検出アルゴリズムは、しばしば過度の誤報に悩まされる。
本稿では,オペレータのフィードバックの導入とメリットをアクティブな学習に活用することを提案する。
論文 参考訳(メタデータ) (2022-01-25T13:54:19Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
半教師付き異常検出は、通常のデータに基づいて訓練されたモデルを用いて、通常のサンプルから異常を検出することを目的としている。
本稿では,自己エンコーダのパラメータを協調的に学習する手法であるDASVDDを提案する。
論文 参考訳(メタデータ) (2021-06-09T21:57:41Z) - Am I Rare? An Intelligent Summarization Approach for Identifying Hidden
Anomalies [0.0]
本稿では,INSIDENTと呼ばれる隠れ異常を識別するインテリジェント・サマリゼーション手法を提案する。
提案手法は,各クラスタの特徴を局所重み付けすることにより,特徴空間を特徴空間に動的にマッピングするクラスタリングに基づくアルゴリズムである。
また、クラスタサイズに基づく代表者の選択は、集計データ内の元のデータと同じ分布を保持する。
論文 参考訳(メタデータ) (2020-12-24T23:22:57Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
我々は,OoD検出性能を改善しつつ,ニューラルネットワークをOoDデータのチューニングから解放する2つの方法を提案する。
具体的には、信頼性スコアリングと修正された入力前処理法を分離することを提案する。
大規模画像データセットのさらなる解析により、セマンティックシフトと非セマンティックシフトの2種類の分布シフトが有意な差を示すことが示された。
論文 参考訳(メタデータ) (2020-02-26T04:18:25Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
本稿では, ニューラルネットワークを逆向きに訓練し, 異常なサンプルをよりよく認識するRCGAN(Regularized Cycle Consistent Generative Adversarial Network)を提案する。
実世界のデータと合成データの両方に対する実験結果から,我々のモデルが過去の異常検出ベンチマークにおいて有意かつ一貫した改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-01-18T03:35:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。