論文の概要: Implementation of a Modified U-Net for Medical Image Segmentation on
Edge Devices
- arxiv url: http://arxiv.org/abs/2206.02358v1
- Date: Mon, 6 Jun 2022 05:25:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 15:20:46.866808
- Title: Implementation of a Modified U-Net for Medical Image Segmentation on
Edge Devices
- Title(参考訳): エッジデバイスにおける医用画像分割のための修正U-Netの実装
- Authors: Owais Ali, Hazrat Ali, Syed Ayaz Ali Shah, Aamir Shahzad
- Abstract要約: 本稿では,Intel Movidius Neural Compute Stick 2 (NCS-2) による医用画像のセグメンテーションのための改良U-Netの実装について述べる。
脳MRIのBraTsデータセット、心臓MRIデータセット、およびZNSDBデータセットである。
- 参考スコア(独自算出の注目度): 0.5735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning techniques, particularly convolutional neural networks, have
shown great potential in computer vision and medical imaging applications.
However, deep learning models are computationally demanding as they require
enormous computational power and specialized processing hardware for model
training. To make these models portable and compatible for prototyping, their
implementation on low-power devices is imperative. In this work, we present the
implementation of Modified U-Net on Intel Movidius Neural Compute Stick 2
(NCS-2) for the segmentation of medical images. We selected U-Net because, in
medical image segmentation, U-Net is a prominent model that provides improved
performance for medical image segmentation even if the dataset size is small.
The modified U-Net model is evaluated for performance in terms of dice score.
Experiments are reported for segmentation task on three medical imaging
datasets: BraTs dataset of brain MRI, heart MRI dataset, and Ziehl-Neelsen
sputum smear microscopy image (ZNSDB) dataset. For the proposed model, we
reduced the number of parameters from 30 million in the U-Net model to 0.49
million in the proposed architecture. Experimental results show that the
modified U-Net provides comparable performance while requiring significantly
lower resources and provides inference on the NCS-2. The maximum dice scores
recorded are 0.96 for the BraTs dataset, 0.94 for the heart MRI dataset, and
0.74 for the ZNSDB dataset.
- Abstract(参考訳): 深層学習技術、特に畳み込みニューラルネットワークは、コンピュータビジョンと医療画像の応用に大きな可能性を示している。
しかし、ディープラーニングモデルは、膨大な計算能力と専門的な処理ハードウェアを必要とするため、計算的に要求されている。
これらのモデルをプロトタイピングにポータブルで互換性を持たせるためには、低消費電力デバイスへの実装が不可欠である。
本稿では,Intel Movidius Neural Compute Stick 2 (NCS-2) による医用画像のセグメンテーションのための改良U-Netの実装について述べる。
医用画像のセグメンテーションにおいて,データセットサイズが小さい場合でも,医用画像のセグメンテーションの性能向上を実現する重要なモデルとしてU-Netを選択した。
修正されたu-netモデルは、サイススコアの観点から性能評価される。
脳MRIのBraTsデータセット、心臓MRIデータセット、Ziehl-Neelsen sputum smear microscopy image (ZNSDB)データセットである。
提案モデルでは,パラメータ数をu-netモデルの3000万から,提案アーキテクチャの0.24億に削減した。
実験の結果、改良されたU-Netは、リソースを著しく削減し、NAS-2の推論を提供する。
BraTsデータセットは0.96、心臓MRIデータセットは0.94、ZNSDBデータセットは0.74である。
関連論文リスト
- Residual Vision Transformer (ResViT) Based Self-Supervised Learning Model for Brain Tumor Classification [0.08192907805418585]
自己教師付き学習モデルは、限られたデータセット問題に対するデータ効率と注目すべき解決策を提供する。
本稿では2段階の脳腫瘍分類のための生成型SSLモデルを提案する。
提案されたモデルが最も精度が高く、T1シークエンスでBraTsデータセットで90.56%、Figshareで98.53%、Kaggle脳腫瘍データセットで98.47%を達成している。
論文 参考訳(メタデータ) (2024-11-19T21:42:57Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Comparative Analysis of ImageNet Pre-Trained Deep Learning Models and
DINOv2 in Medical Imaging Classification [7.205610366609243]
本稿では,脳MRIデータの3つの臨床的モダリティを用いたグリオーマグレーディングタスクを行った。
我々は、ImageNetやDINOv2をベースとした様々な事前学習深層学習モデルの性能を比較した。
臨床データでは,DINOv2 はImageNet ベースで事前訓練したモデルほど優れていなかった。
論文 参考訳(メタデータ) (2024-02-12T11:49:08Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal
Biomedical Image Real-Time Segmentation [0.0]
我々は,新しい軽量アーキテクチャ -- 医療用チャネルワイズ機能ピラミッドネットワークを開発した。
u-netの約2%のパラメータと8mbのメモリを持つ5つの医療データセットで同等のセグメンテーション結果を達成している。
論文 参考訳(メタデータ) (2021-05-10T02:29:11Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - 3D U-Net for segmentation of COVID-19 associated pulmonary infiltrates
using transfer learning: State-of-the-art results on affordable hardware [0.0]
肺浸潤物はCOVID-19の重症度を評価するのに役立ちますが、手動セグメンテーションは労働力と時間集約的です。
神経ネットワークを用いて肺浸潤を分断すると、このタスクは自動化される。
限られたハードウェアと短時間で最先端のセグメンテーションモデルをトレーニングするためのトランスファーラーニングの使用方法に関するソリューションを開発し、テストしました。
論文 参考訳(メタデータ) (2021-01-25T09:37:32Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - U-Net Based Architecture for an Improved Multiresolution Segmentation in
Medical Images [0.0]
我々は,マルチレゾリューション・フレームワークを用いた画像分割のための完全畳み込みニューラルネットワークを提案している。
提案したアーキテクチャ(mrU-Net)では、入力画像とそのダウンサンプルバージョンをネットワーク入力として使用した。
ネットワークを4つの異なる医療データセットでトレーニングし、テストしました。
論文 参考訳(メタデータ) (2020-07-16T10:19:01Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - A Data and Compute Efficient Design for Limited-Resources Deep Learning [68.55415606184]
同変ニューラルネットワークは 深層学習コミュニティへの関心を高めています
医療分野では、データの対称性を効果的に活用して、より正確で堅牢なモデルの構築に成功している。
ディープ・ラーニング・ソリューションのモバイル・オン・デバイス実装は医療応用のために開発されている。
しかし、同変モデルは大規模で計算コストのかかるアーキテクチャを用いて一般的に実装されており、モバイルデバイス上では動作しない。
本研究では、MobileNetV2の同変バージョンを設計、テストし、さらにモデル量子化により最適化し、より効率的な推論を可能にする。
論文 参考訳(メタデータ) (2020-04-21T00:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。