Forecasting COVID- 19 cases using Statistical Models and Ontology-based
Semantic Modelling: A real time data analytics approach
- URL: http://arxiv.org/abs/2206.02795v1
- Date: Mon, 6 Jun 2022 11:58:11 GMT
- Title: Forecasting COVID- 19 cases using Statistical Models and Ontology-based
Semantic Modelling: A real time data analytics approach
- Authors: Sadhana Tiwari, Ritesh Chandra, Sonali Agarwal
- Abstract summary: We develop a prediction model using statistical time series models such as SARIMA and FBProphet to monitor the daily active, recovered and death cases of COVID-19 accurately.
A COVID-19 Ontology is developed and performs various queries using SPARQL query on designed Ontology.
On individual basis COVID case prediction, approx. 497 individual samples have been tested and classified into five different levels of COVID classes.
- Score: 1.8008011356310047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: SARS-COV-19 is the most prominent issue which many countries face today. The
frequent changes in infections, recovered and deaths represents the dynamic
nature of this pandemic. It is very crucial to predict the spreading rate of
this virus for accurate decision making against fighting with the situation of
getting infected through the virus, tracking and controlling the virus
transmission in the community. We develop a prediction model using statistical
time series models such as SARIMA and FBProphet to monitor the daily active,
recovered and death cases of COVID-19 accurately. Then with the help of various
details across each individual patient (like height, weight, gender etc.), we
designed a set of rules using Semantic Web Rule Language and some mathematical
models for dealing with COVID19 infected cases on an individual basis. After
combining all the models, a COVID-19 Ontology is developed and performs various
queries using SPARQL query on designed Ontology which accumulate the risk
factors, provide appropriate diagnosis, precautions and preventive suggestions
for COVID Patients. After comparing the performance of SARIMA and FBProphet, it
is observed that the SARIMA model performs better in forecasting of COVID
cases. On individual basis COVID case prediction, approx. 497 individual
samples have been tested and classified into five different levels of COVID
classes such as Having COVID, No COVID, High Risk COVID case, Medium to High
Risk case, and Control needed case.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - COVIDHunter: COVID-19 pandemic wave prediction and mitigation via
seasonality-aware modeling [11.423326973456437]
We introduce COVIDHunter, a flexible and accurate COVID-19 outbreak simulation model.
It predicts the daily number of cases, hospitalizations, and deaths due to COVID-19.
Using Switzerland as a case study, COVIDHunter estimates that we are experiencing a deadly new wave that will peak on 26 January 2022.
arXiv Detail & Related papers (2022-06-14T08:48:13Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
We present a comparative analysis of various machine learning (ML) approaches in predicting the COVID-19 outbreak in the epidemiological domain.
The results reveal the advantages of ML algorithms for supporting decision making of evolving short term policies.
arXiv Detail & Related papers (2021-02-11T11:57:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
logistic regression and XGBoost classifiers, that allow for effective screening of patients for COVID-19 were generated.
The obtained classification models provided the basis for the DECODE service (decode.polsl.pl), which can serve as support in screening patients with COVID-19 disease.
This data set consists of more than 3,000 examples is based on questionnaires collected at a hospital in Poland.
arXiv Detail & Related papers (2020-11-24T17:44:01Z) - Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting [10.052302234274256]
We design and analysis of deep learning-based models for COVID-19 forecasting.
We consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions.
We propose clustering-based training for high-temporal forecasting.
arXiv Detail & Related papers (2020-10-27T17:52:02Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2 is continuing to spread globally and has become a pandemic.
There is an urgent need to develop machine learning techniques to predict the spread of COVID-19.
arXiv Detail & Related papers (2020-07-29T10:14:11Z) - Forecasting Brazilian and American COVID-19 cases based on artificial
intelligence coupled with climatic exogenous variables [3.0711362702464675]
coronavirus disease (COVID-19) is a public health problem once according to the World Health Organization up to June 10th, 2020.
In the current scenario, the Brazil and the United States of America present a high daily incidence of new cases and deaths.
It is important to forecast the number of new cases in a time window of one week, once this can help the public health system developing strategic planning to deals with the COVID-19.
arXiv Detail & Related papers (2020-07-21T17:58:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.