論文の概要: Self-supervised Learning for Human Activity Recognition Using 700,000 Person-days of Wearable Data
- arxiv url: http://arxiv.org/abs/2206.02909v3
- Date: Thu, 20 Jun 2024 10:46:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 11:31:36.925888
- Title: Self-supervised Learning for Human Activity Recognition Using 700,000 Person-days of Wearable Data
- Title(参考訳): 70,000人のウェアラブルデータを用いた人間行動認識のための自己教師型学習
- Authors: Hang Yuan, Shing Chan, Andrew P. Creagh, Catherine Tong, Aidan Acquah, David A. Clifton, Aiden Doherty,
- Abstract要約: 我々は,英国・ビオバンクのアクティビティトラッカーデータセット上で,自己教師付き学習技術を活用する。
結果として得られたアクティビティ認識モデルは、7つのベンチマークデータセットで一貫して強力なベースラインを上回りました。
- 参考スコア(独自算出の注目度): 15.092070262451768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in deep learning for human activity recognition have been relatively limited due to the lack of large labelled datasets. In this study, we leverage self-supervised learning techniques on the UK-Biobank activity tracker dataset--the largest of its kind to date--containing more than 700,000 person-days of unlabelled wearable sensor data. Our resulting activity recognition model consistently outperformed strong baselines across seven benchmark datasets, with an F1 relative improvement of 2.5%-100% (median 18.4%), the largest improvements occurring in the smaller datasets. In contrast to previous studies, our results generalise across external datasets, devices, and environments. Our open-source model will help researchers and developers to build customisable and generalisable activity classifiers with high performance.
- Abstract(参考訳): 人間の活動認識のためのディープラーニングの進歩は、大きなラベル付きデータセットが欠如しているため、比較的制限されている。
本研究では,英国・ビオバンクのアクティビティ・トラッカー・データセット上での自己教師型学習技術を活用した。
結果として得られたアクティビティ認識モデルは、7つのベンチマークデータセットで一貫して強力なベースラインを上回り、F1の相対的な改善は2.5%-100%(中間18.4%)であり、より小さなデータセットで発生した最大の改善である。
これまでの研究とは対照的に、我々の結果は外部データセット、デバイス、環境にまたがって一般化されている。
私たちのオープンソースモデルは、研究者や開発者がカスタマイズ可能で汎用的なアクティビティ分類器を高性能で構築するのに役立ちます。
関連論文リスト
- Consistency Based Weakly Self-Supervised Learning for Human Activity Recognition with Wearables [1.565361244756411]
センサデータから人間の活動を認識するための弱自己教師型アプローチについて述べる。
提案手法は, クラスタリングアルゴリズムが, 基礎となる人間の行動を特定し, 分類する上で, 同等のパフォーマンスを達成するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-07-29T06:29:21Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
多様な不確実なデータのバランスをとるために適応的なサブプールを構築する新しいフレームワークであるBalancing Active Learning (BAL)を導入する。
我々のアプローチは、広く認識されているベンチマークにおいて、確立されたすべてのアクティブな学習方法より1.20%優れています。
論文 参考訳(メタデータ) (2023-12-26T08:14:46Z) - Scaling Data Generation in Vision-and-Language Navigation [116.95534559103788]
本稿では,学習のための大規模データ生成に有効なパラダイムを提案する。
我々は、HM3DとGibsonのデータセットから1200以上のフォトリアリスティック環境を適用し、490万の命令軌道対を合成する。
我々の大規模データセットのおかげで、既存のエージェントの性能は(以前のSoTAでは+11%絶対)、単純な模倣学習によってR2Rテストの分割で80%の単ラン成功率で大幅に向上できる。
論文 参考訳(メタデータ) (2023-07-28T16:03:28Z) - Unsupervised Embedding Learning for Human Activity Recognition Using
Wearable Sensor Data [2.398608007786179]
我々は,人間の活動が密接な位置にある埋め込み空間に投影する,教師なしの手法を提案する。
3つのラベル付きベンチマークデータセットの実験結果は、フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-07-21T08:52:47Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
In-the-wildデータ収集に焦点をあてたユーザスタディにおいて,一般的な4つのアノテーション手法の評価と対比を行う実験的検討を行った。
実際の記録プロセス中に参加者がアノテートするユーザ主導のin situアノテーションと、各日の終わりに参加者が振り返ってアノテートするリコールメソッドの両方に対して、参加者は自身のアクティビティクラスと対応するラベルを選択できる柔軟性を持っていた。
論文 参考訳(メタデータ) (2023-05-15T16:02:56Z) - SelfAct: Personalized Activity Recognition based on Self-Supervised and
Active Learning [0.688204255655161]
SelfActは、ウェアラブルおよびモバイルデバイス上でのヒューマンアクティビティ認識(HAR)のための新しいフレームワークである。
自己教師とアクティブな学習を組み合わせることで、アクティビティ実行のイントラやインターバリアビリティといった問題を軽減します。
公開されている2つのHARデータセットに関する実験は、SelfActが完全に教師付きアプローチのそれに近い、あるいはそれ以上の結果を得ることを示した。
論文 参考訳(メタデータ) (2023-04-19T09:39:11Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Understanding the World Through Action [91.3755431537592]
ラベルのないデータを利用するための汎用的で原則的で強力なフレームワークは、強化学習から導き出すことができると私は主張する。
このような手順が、下流の潜在的なタスクとどのように密接に一致しているかについて論じます。
論文 参考訳(メタデータ) (2021-10-24T22:33:52Z) - SelfHAR: Improving Human Activity Recognition through Self-training with
Unlabeled Data [9.270269467155547]
SelfHARは、ラベルなしデータセットを利用して小さなラベル付きデータセットを補完する半教師付きモデルである。
提案手法は教師による自己学習と,ラベル付きデータセットとラベル付きデータセットの知識を融合する。
SelfHARはデータ効率が高く、教師付きアプローチの10倍のラベル付きデータを使用して、同様のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-02-11T15:40:35Z) - Towards Deep Clustering of Human Activities from Wearables [21.198881633580797]
本研究では,ウェアラブルからの人間行動認識の基本的な問題に対して,教師なしのエンドツーエンド学習戦略を開発する。
本研究では,センサデータの教師なし表現を協調的に学習し,異なる人間の活動に強い意味的対応を持つクラスタ代入を生成する手法の有効性を示す。
論文 参考訳(メタデータ) (2020-08-02T13:55:24Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。