Quantum information spreading in random spin chains
- URL: http://arxiv.org/abs/2206.02934v1
- Date: Mon, 6 Jun 2022 22:26:19 GMT
- Title: Quantum information spreading in random spin chains
- Authors: Paola Ruggiero and Xhek Turkeshi
- Abstract summary: We study the spreading of quantum correlations and information in a one-dimensional quantum spin chain with critical disorder as encoded in an infinite randomness fixed point.
Specifically, we focus on the dynamics after a quantum quench of the R'enyi entropies, of the mutual information and of the entanglement negativity in the prototypical XXZ spin chain with random bonds and anisotropy parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the spreading of quantum correlations and information in a
one-dimensional quantum spin chain with critical disorder as encoded in an
infinite randomness fixed point. Specifically, we focus on the dynamics after a
quantum quench of the R\'enyi entropies, of the mutual information and of the
entanglement negativity in the prototypical XXZ spin chain with random bonds
and anisotropy parameters. We provide analytic predictions in the scaling
regime based on real-space renormalization group methods. We support these
findings through numerical simulations in the non-interacting limit, where we
can access the scaling regime.
Related papers
- Characterizing quantum chaoticity of kicked spin chains [0.0]
Quantum many-body systems are commonly considered as quantum chaotic if their spectral statistics agree with those of random matrix theory.
We demonstrate that even if both level spacing distribution and eigenvector statistics agree well with random matrix predictions, the entanglement entropy deviates from the expected Page curve.
arXiv Detail & Related papers (2023-06-15T10:51:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Characterizing quantum criticality and steered coherence in the XY-Gamma
chain [0.37498611358320727]
We analytically solve the one-dimensional short-range interacting case with the Jordan-Wigner transformation.
In the gapless phase, an incommensurate spiral order is manifested by the vector-chiral correlations.
We derive explicit scaling forms of the excitation gap near the quantum critical points.
arXiv Detail & Related papers (2022-06-08T15:28:10Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z) - Quantum information scrambling in a trapped-ion quantum simulator with
tunable range interactions [0.0]
In ergodic many-body quantum systems, locally encoded quantum information becomes inaccessible to local measurements.
We present first experimental demonstrations of quantum information scrambling on a 10-qubit trapped-ion quantum simulator.
We also analyze the role of decoherence in our system by comparing our measurements to numerical simulations and by measuring R'enyi entanglement entropies.
arXiv Detail & Related papers (2020-01-07T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.