Characterizing quantum chaoticity of kicked spin chains
- URL: http://arxiv.org/abs/2306.09034v2
- Date: Fri, 13 Oct 2023 11:42:45 GMT
- Title: Characterizing quantum chaoticity of kicked spin chains
- Authors: Tabea Herrmann, Maximilian F. I. Kieler, Arnd B\"acker
- Abstract summary: Quantum many-body systems are commonly considered as quantum chaotic if their spectral statistics agree with those of random matrix theory.
We demonstrate that even if both level spacing distribution and eigenvector statistics agree well with random matrix predictions, the entanglement entropy deviates from the expected Page curve.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum many-body systems are commonly considered as quantum chaotic if their
spectral statistics, such as the level spacing distribution, agree with those
of random matrix theory. Using the example of the kicked Ising chain we
demonstrate that even if both level spacing distribution and eigenvector
statistics agree well with random matrix predictions, the entanglement entropy
deviates from the expected Page curve. To explain this observation we propose a
new measure of the effective spin interactions and obtain the corresponding
random matrix result. By this the deviations of the entanglement entropy can be
attributed to significantly different behavior of the $k$-spin interactions
compared with RMT.
Related papers
- Deviations from random matrix entanglement statistics for kicked quantum chaotic spin-$1/2$ chains [0.0]
It is commonly expected that for quantum chaotic body systems the statistical properties approach those of random matrices when increasing the system size.
We demonstrate for various kicked spin-$1/2$ chain models that the average eigenstate entanglement indeed approaches the random matrix result.
While for autonomous systems such deviations are expected, they are surprising for the more scrambling kicked systems.
arXiv Detail & Related papers (2024-05-13T08:27:07Z) - Tensor product random matrix theory [39.58317527488534]
We introduce a real-time field theory approach to the evolution of correlated quantum systems.
We describe the full range of such crossover dynamics, from initial product states to a maximum entropy ergodic state.
arXiv Detail & Related papers (2024-04-16T21:40:57Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Quantum information spreading in random spin chains [0.0]
We study the spreading of quantum correlations and information in a one-dimensional quantum spin chain with critical disorder as encoded in an infinite randomness fixed point.
Specifically, we focus on the dynamics after a quantum quench of the R'enyi entropies, of the mutual information and of the entanglement negativity in the prototypical XXZ spin chain with random bonds and anisotropy parameters.
arXiv Detail & Related papers (2022-06-06T22:26:19Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z) - Maximum Multiscale Entropy and Neural Network Regularization [28.00914218615924]
A well-known result shows that the maximum entropy distribution under a mean constraint has an exponential form called the Gibbs-Boltzmann distribution.
This paper investigates a generalization of these results to a multiscale setting.
arXiv Detail & Related papers (2020-06-25T17:56:11Z) - Test of Eigenstate Thermalization Hypothesis Based on Local Random
Matrix Theory [4.014524824655106]
We numerically obtain a distribution of maximum fluctuations of eigenstate expectation values for different realizations of the interactions.
The ergodicity of our random matrix ensembles breaks down due to locality.
arXiv Detail & Related papers (2020-05-13T15:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.