論文の概要: Searching Similarity Measure for Binarized Neural Networks
- arxiv url: http://arxiv.org/abs/2206.03325v1
- Date: Sun, 5 Jun 2022 06:53:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 15:38:25.771774
- Title: Searching Similarity Measure for Binarized Neural Networks
- Title(参考訳): 二元化ニューラルネットワークの類似度探索
- Authors: Yanfei Li, Ang Li, Huimin Yu
- Abstract要約: バイナリニューラルネットワーク(BNN)は、リソース制限されたデバイスにデプロイされる有望なモデルである。
BNNは難解な精度の劣化に悩まされ、様々な領域で適用が制限される。
遺伝的アルゴリズムに基づくBNN調整類似度尺度の自動探索手法を提案する。
- 参考スコア(独自算出の注目度): 14.847148292246374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Being a promising model to be deployed in resource-limited devices, Binarized
Neural Networks (BNNs) have drawn extensive attention from both academic and
industry. However, comparing to the full-precision deep neural networks (DNNs),
BNNs suffer from non-trivial accuracy degradation, limiting its applicability
in various domains. This is partially because existing network components, such
as the similarity measure, are specially designed for DNNs, and might be
sub-optimal for BNNs.
In this work, we focus on the key component of BNNs -- the similarity
measure, which quantifies the distance between input feature maps and filters,
and propose an automatic searching method, based on genetic algorithm, for
BNN-tailored similarity measure. Evaluation results on Cifar10 and Cifar100
using ResNet, NIN and VGG show that most of the identified similarty measure
can achieve considerable accuracy improvement (up to 3.39%) over the
commonly-used cross-correlation approach.
- Abstract(参考訳): リソース制限されたデバイスにデプロイされる有望なモデルであるBNN(Binarized Neural Networks)は、学術と産業の両方から広く注目を集めている。
しかし、完全精度のディープニューラルネットワーク(DNN)と比較すると、BNNは非自明な精度劣化に悩まされ、さまざまな領域で適用範囲が制限される。
これは、類似度尺度のような既存のネットワークコンポーネントが特別にDNN用に設計されており、BNNに準最適化されているためである。
本研究では,入力特徴マップとフィルタ間の距離を定量化する類似度尺度であるBNNの重要成分に着目し,遺伝的アルゴリズムに基づくBNN調整類似度尺度の自動探索手法を提案する。
ResNet、NIN、VGGを用いたCifar10およびCifar100の評価結果から、同定された類似度指標のほとんどは、一般的に使用される相互相関法よりも相当な精度(最大3.39%)を達成できることが示された。
関連論文リスト
- Masked Bayesian Neural Networks : Computation and Optimality [1.3649494534428745]
そこで本稿では, 適切な複雑性を伴って, 優れた深層ニューラルネットワークを探索する, スパースベイズニューラルネットワーク(BNN)を提案する。
我々は各ノードのマスキング変数を用いて、後続分布に応じていくつかのノードをオフにし、ノードワイズDNNを生成する。
いくつかのベンチマークデータセットを解析することにより,提案したBNNが既存手法と比較してよく動作することを示す。
論文 参考訳(メタデータ) (2022-06-02T02:59:55Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - A Mixed Integer Programming Approach for Verifying Properties of
Binarized Neural Networks [44.44006029119672]
BNN検証のための混合整数計画法を提案する。
我々は,MNISTデータセットと航空機衝突回避制御器を用いて訓練したBNNの特性を検証することによって,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2022-03-11T01:11:29Z) - Elastic-Link for Binarized Neural Network [9.83865304744923]
ELモジュールは、その後の畳み込み出力特徴に実値入力特徴を適応的に付加することにより、BNN内の情報フローを豊かにする。
ELは、大規模なImageNetデータセットに挑戦する上で、大幅に改善されている。
ReActNetの統合により、71.9%の精度で新しい最先端結果が得られる。
論文 参考訳(メタデータ) (2021-12-19T13:49:29Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
ベイジアンネットワーク(BNN)は、ランダム性を組み込むことで、敵の攻撃を扱うのに頑丈で適している。
我々はベイズ的推論(つまり変分ベイズ)をDenseNetアーキテクチャに融合させることで、BNN-DenseNetと呼ばれるBNNモデルを作成する。
逆向きに訓練されたBNNは、ほとんどの実験で非ベイズ的で逆向きに訓練されたBNNよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T16:14:44Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor [12.118084418840152]
Spiking Neural Networks(SNN)は、機械学習ベースのアプリケーションにおいて注目を浴びている。
本稿では,対応するディープニューラルネットワーク(DNN)とほぼ同じ精度のSNNの設計手法を示す。
我々のSNNは89.64%の分類精度を達成し、37のLoihiコアしか占有していない。
論文 参考訳(メタデータ) (2020-05-16T17:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。