論文の概要: Improving the Diagnosis of Psychiatric Disorders with Self-Supervised
Graph State Space Models
- arxiv url: http://arxiv.org/abs/2206.03331v1
- Date: Tue, 7 Jun 2022 14:15:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 20:04:21.395494
- Title: Improving the Diagnosis of Psychiatric Disorders with Self-Supervised
Graph State Space Models
- Title(参考訳): 自己監督型グラフ状態モデルによる精神疾患の診断の改善
- Authors: Ahmed El Gazzar, Rajat Mani Thomas, Guido Van Wingen
- Abstract要約: 静止機能磁気共鳴画像(rs-fMRI)から異種精神疾患の診断を改善するための枠組みを提案する。
rs-fMRIデータをモデル化するために、最近提案された状態空間モデルS4への拡張であるGraph-S4を開発した。
このフレームワークとGraph-S4を組み合わせることで、3つのオープンソースマルチセンター rs-fMRI 臨床データセットにおいて、MDD と ASD のニューロイメージングに基づく単体予測モデルの診断性能が大幅に向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single subject prediction of brain disorders from neuroimaging data has
gained increasing attention in recent years. Yet, for some heterogeneous
disorders such as major depression disorder (MDD) and autism spectrum disorder
(ASD), the performance of prediction models on large-scale multi-site datasets
remains poor. We present a two-stage framework to improve the diagnosis of
heterogeneous psychiatric disorders from resting-state functional magnetic
resonance imaging (rs-fMRI). First, we propose a self-supervised mask
prediction task on data from healthy individuals that can exploit differences
between healthy controls and patients in clinical datasets. Next, we train a
supervised classifier on the learned discriminative representations. To model
rs-fMRI data, we develop Graph-S4; an extension to the recently proposed
state-space model S4 to graph settings where the underlying graph structure is
not known in advance. We show that combining the framework and Graph-S4 can
significantly improve the diagnostic performance of neuroimaging-based single
subject prediction models of MDD and ASD on three open-source multi-center
rs-fMRI clinical datasets.
- Abstract(参考訳): 近年,神経画像データによる脳障害の単一被検者予測が注目されている。
しかし、大うつ病障害(MDD)や自閉症スペクトラム障害(ASD)などの異種性疾患では、大規模多地点データセットの予測モデルの性能はいまだに劣っている。
静止状態機能MRI(s-fMRI)から異種精神疾患の診断を改善するための2段階の枠組みを提案する。
まず,健康管理と臨床データセットにおける患者との差異を活用できる健常者データに対する自己教師付きマスク予測タスクを提案する。
次に,学習した識別表現に基づいて教師付き分類器を訓練する。
rs-fMRIデータをモデル化するために、最近提案された状態空間モデルS4への拡張であるGraph-S4を開発した。
このフレームワークとGraph-S4を組み合わせることで、3つのオープンソースマルチセンター rs-fMRI 臨床データセットにおいて、MDD と ASD のニューロイメージングに基づく単体予測モデルの診断性能が大幅に向上することを示す。
関連論文リスト
- GAMMA-PD: Graph-based Analysis of Multi-Modal Motor Impairment Assessments in Parkinson's Disease [9.69595196614787]
本稿では,多モード臨床データ解析のための新しいヘテロジニアスハイパーグラフ融合フレームワークであるGAMA-PDを提案する。
GAMMA-PDは、高次情報を保存することにより、画像と非画像データを"ハイパーネットワーク"(患者集団グラフ)に統合する。
パーキンソン病における運動障害症状の予測に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-10-01T15:51:33Z) - Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease [0.0]
我々は、新しいアーキテクチャをトレーニングして潜伏空間の分布を構築し、そこからサンプルを抽出し、将来的な解剖学的変化の予測を生成する。
いくつかの代替手法と比較することにより,より高解像度でより個別化された画像を生成することを示す。
論文 参考訳(メタデータ) (2024-08-04T13:09:06Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Probabilistic Temporal Prediction of Continuous Disease Trajectories and Treatment Effects Using Neural SDEs [6.5527554277858275]
神経差分方程式(NSDE)による疾患進行の持続的時間的進化をモデル化するための最初の因果時間的枠組みを提示する。
本研究は,将来のMS障害(EDSSなど)と治療効果を正確に予測するための,不確実性に基づく因果学習(DL)モデルとして,最初の成功例を示す。
論文 参考訳(メタデータ) (2024-06-18T17:22:55Z) - Spatiotemporal Graph Neural Network Modelling Perfusion MRI [12.712005118761516]
Per vascular MRI (pMRI) は腫瘍について貴重な洞察を与え、腫瘍の遺伝子型を予測することを約束する。
しかし、4D pMRIに合わせた効果的なモデルはまだ不足している。
本研究は,GNNモデルを用いた4次元pMRIのモデル化の試みである。
論文 参考訳(メタデータ) (2024-06-10T16:24:46Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
本稿では、アルツハイマー病(AD)の自動診断と、sMRIデータから、この疾患に関連する重要な脳領域の局所化について、エンドツーエンドのディープラーニングアプローチを提案する。
提案手法は,AD対認知正常(CN)とプログレッシブMCI(pMCI)と安定MCI(sMCI)の2つの分類タスクに対して,パブリックアクセス可能な2つのデータセットで評価されている。
実験結果から,本手法はマルチモデルや3次元CNN手法など,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-07-28T07:19:00Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。