An Adaptive Federated Relevance Framework for Spatial Temporal Graph
Learning
- URL: http://arxiv.org/abs/2206.03420v3
- Date: Thu, 14 Sep 2023 13:15:56 GMT
- Title: An Adaptive Federated Relevance Framework for Spatial Temporal Graph
Learning
- Authors: Tiehua Zhang, Yuze Liu, Zhishu Shen, Rui Xu, Xin Chen, Xiaowei Huang,
Xi Zheng
- Abstract summary: We propose an adaptive federated relevance framework, namely FedRel, for spatial-temporal graph learning.
The core Dynamic Inter-Intra Graph (DIIG) module in the framework is able to use these features to generate the spatial-temporal graphs.
To improve the model generalization ability and performance while preserving the local data privacy, we also design a relevance-driven federated learning module.
- Score: 14.353798949041698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial-temporal data contains rich information and has been widely studied
in recent years due to the rapid development of relevant applications in many
fields. For instance, medical institutions often use electrodes attached to
different parts of a patient to analyse the electorencephal data rich with
spatial and temporal features for health assessment and disease diagnosis.
Existing research has mainly used deep learning techniques such as
convolutional neural network (CNN) or recurrent neural network (RNN) to extract
hidden spatial-temporal features. Yet, it is challenging to incorporate both
inter-dependencies spatial information and dynamic temporal changes
simultaneously. In reality, for a model that leverages these spatial-temporal
features to fulfil complex prediction tasks, it often requires a colossal
amount of training data in order to obtain satisfactory model performance.
Considering the above-mentioned challenges, we propose an adaptive federated
relevance framework, namely FedRel, for spatial-temporal graph learning in this
paper. After transforming the raw spatial-temporal data into high quality
features, the core Dynamic Inter-Intra Graph (DIIG) module in the framework is
able to use these features to generate the spatial-temporal graphs capable of
capturing the hidden topological and long-term temporal correlation information
in these graphs. To improve the model generalization ability and performance
while preserving the local data privacy, we also design a relevance-driven
federated learning module in our framework to leverage diverse data
distributions from different participants with attentive aggregations of their
models.
Related papers
- Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
In urban sensing applications, effective-temporal prediction frameworks play a crucial role in traffic analysis, human mobility evaluations and crime prediction.
The presence of data noise and sparsity in spatial and temporal data presents significant challenges for existing neural network models in learning robust representations.
We propose a novel self-supervised learning paradigm for effective-temporal data augmentation.
arXiv Detail & Related papers (2024-10-14T07:33:33Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
arXiv Detail & Related papers (2024-05-07T14:08:57Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - GATGPT: A Pre-trained Large Language Model with Graph Attention Network
for Spatiotemporal Imputation [19.371155159744934]
In real-world settings, such data often contain missing elements due to issues like sensor malfunctions and data transmission errors.
The objective oftemporal imputation is to estimate these missing values by understanding the inherent spatial and temporal relationships in the observed time series.
Traditionally, intricatetemporal imputation has relied on specific architectures, which suffer from limited applicability and high computational complexity.
In contrast our approach integrates pre-trained large language models (LLMs) into intricatetemporal imputation, introducing a groundbreaking framework, GATGPT.
arXiv Detail & Related papers (2023-11-24T08:15:11Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - An Enhanced Adversarial Network with Combined Latent Features for
Spatio-Temporal Facial Affect Estimation in the Wild [1.3007851628964147]
This paper proposes a novel model that efficiently extracts both spatial and temporal features of the data by means of its enhanced temporal modelling based on latent features.
Our proposed model consists of three major networks, coined Generator, Discriminator, and Combiner, which are trained in an adversarial setting combined with curriculum learning to enable our adaptive attention modules.
arXiv Detail & Related papers (2021-02-18T04:10:12Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.