論文の概要: XAI for Cybersecurity: State of the Art, Challenges, Open Issues and
Future Directions
- arxiv url: http://arxiv.org/abs/2206.03585v1
- Date: Fri, 3 Jun 2022 02:15:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-12 19:28:48.401340
- Title: XAI for Cybersecurity: State of the Art, Challenges, Open Issues and
Future Directions
- Title(参考訳): サイバーセキュリティのためのxai - 最先端技術,課題,オープンイシュー,今後の方向性
- Authors: Gautam Srivastava, Rutvij H Jhaveri, Sweta Bhattacharya, Sharnil
Pandya, Rajeswari, Praveen Kumar Reddy Maddikunta, Gokul Yenduri, Jon G.
Hall, Mamoun Alazab, Thippa Reddy Gadekallu
- Abstract要約: AIモデルは、開発者が特定の決定の背後にある理由の説明や追跡ができないブラックボックスとして現れることが多い。
説明可能なAI(XAI)は、情報を抽出し、結果を視覚化するのに役立つ、急速に成長する研究分野である。
本報告では,サイバーセキュリティと攻撃形態について概説する。
次に、従来のAI技術の使用とその関連する課題について議論し、様々なアプリケーションでXAIを使用するための扉を開く。
- 参考スコア(独自算出の注目度): 16.633632244131775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past few years, artificial intelligence (AI) techniques have been
implemented in almost all verticals of human life. However, the results
generated from the AI models often lag explainability. AI models often appear
as a blackbox wherein developers are unable to explain or trace back the
reasoning behind a specific decision. Explainable AI (XAI) is a rapid growing
field of research which helps to extract information and also visualize the
results generated with an optimum transparency. The present study provides and
extensive review of the use of XAI in cybersecurity. Cybersecurity enables
protection of systems, networks and programs from different types of attacks.
The use of XAI has immense potential in predicting such attacks. The paper
provides a brief overview on cybersecurity and the various forms of attack.
Then the use of traditional AI techniques and its associated challenges are
discussed which opens its doors towards use of XAI in various applications. The
XAI implementations of various research projects and industry are also
presented. Finally, the lessons learnt from these applications are highlighted
which act as a guide for future scope of research.
- Abstract(参考訳): 過去数年間、人工知能(AI)の技術は、ほぼすべての人間の生活に実装されてきた。
しかし、aiモデルから得られた結果は説明可能性に遅れることが多い。
AIモデルは、開発者が特定の決定の背後にある理由の説明や追跡ができないブラックボックスとして現れることが多い。
説明可能なAI(XAI)は、情報を抽出し、最適な透明性で生成された結果を視覚化するのに役立つ、急速に成長する研究分野である。
本研究は,サイバーセキュリティにおけるxaiの利用を概観するものである。
サイバーセキュリティは、異なるタイプの攻撃からシステム、ネットワーク、プログラムを保護することができる。
XAIの使用は、そのような攻撃を予測する大きな可能性を秘めている。
この論文は、サイバーセキュリティと様々な攻撃形態についての概要を提供する。
次に、従来のAI技術の使用とその関連する課題について議論し、様々なアプリケーションでXAIを使用するための扉を開く。
各種研究プロジェクトや産業のXAI実装も紹介されている。
最後に、これらのアプリケーションから学んだ教訓が強調され、将来の研究範囲のガイドとして機能する。
関連論文リスト
- A Survey on Offensive AI Within Cybersecurity [1.8206461789819075]
攻撃的AIに関する調査論文は、AIシステムに対する攻撃および使用に関する様々な側面を包括的にカバーする。
消費者、企業、公共のデジタルインフラストラクチャなど、さまざまな分野における攻撃的なAIプラクティスの影響を掘り下げる。
この論文では、敵対的な機械学習、AIモデルに対する攻撃、インフラストラクチャ、インターフェース、および情報収集、ソーシャルエンジニアリング、兵器化されたAIといった攻撃的テクニックについて検討する。
論文 参考訳(メタデータ) (2024-09-26T17:36:22Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
最近の研究で、人工知能のセキュリティの研究と実践のギャップが特定されている。
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。
論文 参考訳(メタデータ) (2023-11-16T16:09:44Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
説明可能な人工知能(XAI)は、決定と行動に対して明確かつ解釈可能な説明を提供する機械学習モデルを作成することを目的としている。
ネットワークサイバーセキュリティの分野では、XAIは、サイバー脅威の振る舞いをよりよく理解することで、ネットワークセキュリティへのアプローチ方法に革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-03-07T22:54:18Z) - Explainable Artificial Intelligence and Cybersecurity: A Systematic
Literature Review [0.799536002595393]
XAIは、ユーザーと開発者にとってAIアルゴリズムの操作をより解釈可能にすることを目的としている。
本研究は,サイバーセキュリティに適用されたXAI研究シナリオについて検討する。
論文 参考訳(メタデータ) (2023-02-27T17:47:56Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Explainable Artificial Intelligence (XAI) for Internet of Things: A
Survey [1.7205106391379026]
人工知能(AI)モデルのブラックボックスの性質は、ユーザーがそのようなモデルによって生成された出力を理解し、時には信頼することを許さない。
結果だけでなく、結果への決定パスも重要なAIアプリケーションでは、このようなブラックボックスAIモデルは不十分である。
説明可能な人工知能(XAI)は、この問題に対処し、ユーザによって解釈される一連のAIモデルを定義する。
論文 参考訳(メタデータ) (2022-06-07T08:22:30Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Explainable AI: current status and future directions [11.92436948211501]
説明可能な人工知能(XAI)は、人工知能(AI)分野における新たな研究分野である。
XAIは、AIが特定のソリューションをどのように取得したかを説明し、他の"wh"質問にも答えることができる。
本稿では,マルチメディア(テキスト,画像,音声,ビデオ)の観点から,これらの技術の概要を紹介する。
論文 参考訳(メタデータ) (2021-07-12T08:42:19Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。