SAR Despeckling via Regional Denoising Diffusion Probabilistic Model
- URL: http://arxiv.org/abs/2401.03122v1
- Date: Sat, 6 Jan 2024 04:34:46 GMT
- Title: SAR Despeckling via Regional Denoising Diffusion Probabilistic Model
- Authors: Xuran Hu, Ziqiang Xu, Zhihan Chen, Zhengpeng Feng, Mingzhe Zhu and
LJubisa Stankovic
- Abstract summary: Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models.
This paper introduces a novel despeckling approach termed Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models.
- Score: 6.154796320245652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speckle noise poses a significant challenge in maintaining the quality of
synthetic aperture radar (SAR) images, so SAR despeckling techniques have drawn
increasing attention. Despite the tremendous advancements of deep learning in
fixed-scale SAR image despeckling, these methods still struggle to deal with
large-scale SAR images. To address this problem, this paper introduces a novel
despeckling approach termed Region Denoising Diffusion Probabilistic Model
(R-DDPM) based on generative models. R-DDPM enables versatile despeckling of
SAR images across various scales, accomplished within a single training
session. Moreover, The artifacts in the fused SAR images can be avoided
effectively with the utilization of region-guided inverse sampling. Experiments
of our proposed R-DDPM on Sentinel-1 data demonstrates superior performance to
existing methods.
Related papers
- C-DiffSET: Leveraging Latent Diffusion for SAR-to-EO Image Translation with Confidence-Guided Reliable Object Generation [23.63992950769041]
C-DiffSET is a framework leveraging pretrained Latent Diffusion Model (LDM) extensively trained on natural images.
Remarkably, we find that the pretrained VAE encoder aligns SAR and EO images in the same latent space, even with varying noise levels in SAR inputs.
arXiv Detail & Related papers (2024-11-16T12:28:40Z) - Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation [5.578820789388206]
This paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM)
We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR)
arXiv Detail & Related papers (2024-08-15T05:43:46Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
Self-supervised diffusion model for hyperspectral image restoration is proposed.
textttDDS2M enjoys stronger ability to generalization compared to existing diffusion-based methods.
Experiments on HSI denoising, noisy HSI completion and super-resolution on a variety of HSIs demonstrate textttDDS2M's superiority over the existing task-specific state-of-the-arts.
arXiv Detail & Related papers (2023-03-12T14:57:04Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
despeckling is a crucial preliminary step in scene analysis algorithms.
Recent success of deep learning envisions a new generation of despeckling techniques.
We propose a self-supervised Bayesian despeckling method.
arXiv Detail & Related papers (2020-07-04T11:38:48Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
Deep learning algorithm with self-supervision is proposed in this paper: SAR2SAR.
The strategy to adapt it to SAR despeckling is presented, based on a compensation of temporal changes and a loss function adapted to the statistics of speckle.
Results on real images are discussed, to show the potential of the proposed algorithm.
arXiv Detail & Related papers (2020-06-26T15:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.