論文の概要: Modular design patterns for neural-symbolic integration: refinement and
combination
- arxiv url: http://arxiv.org/abs/2206.04724v1
- Date: Thu, 9 Jun 2022 18:41:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-13 15:12:02.797531
- Title: Modular design patterns for neural-symbolic integration: refinement and
combination
- Title(参考訳): ニューラルシンボリック統合のためのモジュール設計パターン:洗練と組み合わせ
- Authors: Till Mossakowski
- Abstract要約: 我々はファン・ベクムらのニューラルシンボルデザインパターンの側面を定式化する。
これらの形式的概念はヘテロジニアスツール集合 (Hets) で実装されている。
- 参考スコア(独自算出の注目度): 0.6853165736531939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formalise some aspects of the neural-symbol design patterns of van Bekkum
et al., such that we can formally define notions of refinement of patterns, as
well as modular combination of larger patterns from smaller building blocks.
These formal notions are being implemented in the heterogeneous tool set
(Hets), such that patterns and refinements can be checked for well-formedness,
and combinations can be computed.
- Abstract(参考訳): 我々は、ファン・ベクムらのニューラルシンボルデザインパターンのいくつかの側面を形式化し、パターンの洗練の概念を正式に定義できるとともに、より小さなビルディングブロックからの大きなパターンのモジュラー結合を定義できる。
これらの形式的概念はヘテロジニアスツールセット (Hets) で実装されており、パターンや洗練を十分に整合性をチェックすることができ、組み合わせを計算できる。
関連論文リスト
- Learnable & Interpretable Model Combination in Dynamic Systems Modeling [0.0]
我々は、通常、どのモデルが組み合わされるかについて議論し、様々な混合方程式に基づくモデルを表現することができるモデルインターフェースを提案する。
本稿では,2つの組み合わせモデル間の汎用的な接続を,容易に解釈可能な方法で記述できる新しいワイルドカードトポロジーを提案する。
本稿では、2つのモデル間の異なる接続トポロジを学習し、解釈し、比較する。
論文 参考訳(メタデータ) (2024-06-12T11:17:11Z) - Mining Frequent Structures in Conceptual Models [2.841785306638839]
本稿では,概念モデリング言語における頻繁な構造発見問題に対する一般的なアプローチを提案する。
我々は,頻繁な部分グラフマイニングアルゴリズムとグラフ操作手法を組み合わせる。
主な目的は、言語エンジニアのためのサポート施設を提供することである。
論文 参考訳(メタデータ) (2024-06-11T10:24:02Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
GAM(Generalized Additive Models)は、変数とターゲットの間の非線形関係をキャプチャできるが、複雑な特徴相互作用をキャプチャすることはできない。
本稿では,GAMのフレキシブルな形状関数と,数学的表現に見られる複雑な特徴相互作用を融合させる形状表現算術(SHARE)を提案する。
また、標準制約を超えた表現の透明性を保証するSHAREを構築するための一連のルールを設計する。
論文 参考訳(メタデータ) (2024-04-15T13:44:01Z) - Commonsense Ontology Micropatterns [1.181206257787103]
本稿では,大言語モデルで利用可能な共通知識から得られた,頻繁に発生する名詞を表す104の設計パターンの集合について述べる。
このライブラリは、Modular Ontology Modeling メソッドで使える準備ができています。
論文 参考訳(メタデータ) (2024-02-28T21:23:54Z) - Hybrid Modeling Design Patterns [10.266928164137635]
データ駆動コンポーネントとドメイン知識をハイブリッドアプローチに組み合わせるための青写真として機能する4つの基本パターンを提供します。
また、基本パターンとより複雑なハイブリッドモデルの組み合わせを規定する2つの構成パターンも提示する。
それぞれのデザインパターンは、気候モデリング、工学、物理学といった応用分野の典型的なユースケースによって説明されます。
論文 参考訳(メタデータ) (2023-12-29T15:40:38Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - Mode Combinability: Exploring Convex Combinations of Permutation Aligned
Models [0.559239450391449]
置換整列ニューラルネットワークパラメータベクトル$Theta_A$と$Theta_B$ of size$d$の凸結合について検討した。
ハイパーキューブの広い領域は損失値の低い曲面を形成しており、線形モード接続の概念がより一般的な現象にまで拡張されていることを示す。
論文 参考訳(メタデータ) (2023-08-22T15:39:29Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
この研究は、大規模構造化モデルの計算とメモリの複雑さを低減するための単純なアプローチを示す。
言語モデリング,ポリフォニック・ミュージック・モデリング,教師なし文法帰納法,ビデオ・モデリングのためのニューラルパラメータ構造モデルを用いた実験により,我々の手法は大規模状態空間における標準モデルの精度と一致することを示した。
論文 参考訳(メタデータ) (2022-01-08T00:47:50Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - CoSE: Compositional Stroke Embeddings [52.529172734044664]
本稿では、ストロークベースの描画タスクのような複雑な自由形式構造に対する生成モデルを提案する。
我々のアプローチは、自動補完図のようなインタラクティブなユースケースに適している。
論文 参考訳(メタデータ) (2020-06-17T15:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。