論文の概要: Accelerating Asynchronous Federated Learning Convergence via Opportunistic Mobile Relaying
- arxiv url: http://arxiv.org/abs/2206.04742v2
- Date: Sun, 17 Mar 2024 16:38:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 07:06:24.336159
- Title: Accelerating Asynchronous Federated Learning Convergence via Opportunistic Mobile Relaying
- Title(参考訳): Opportunistic Mobile Relayingによる非同期フェデレーション学習収束の高速化
- Authors: Jieming Bian, Jie Xu,
- Abstract要約: 本稿では,非同期フェデレート学習(FL)アルゴリズムの収束性能に及ぼすモビリティの影響について検討する。
モビリティを活用することで、クライアントはリレーとして機能する別のクライアントを介して、サーバと間接的に通信できることを示す。
我々はFedMobileと呼ばれる新しいFLアルゴリズムを提案し、機会論的リレーを取り入れ、いつ、どのようにリレーするかといった重要な問題に対処する。
- 参考スコア(独自算出の注目度): 3.802258033231335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a study on asynchronous Federated Learning (FL) in a mobile network setting. The majority of FL algorithms assume that communication between clients and the server is always available, however, this is not the case in many real-world systems. To address this issue, the paper explores the impact of mobility on the convergence performance of asynchronous FL. By exploiting mobility, the study shows that clients can indirectly communicate with the server through another client serving as a relay, creating additional communication opportunities. This enables clients to upload local model updates sooner or receive fresher global models. We propose a new FL algorithm, called FedMobile, that incorporates opportunistic relaying and addresses key questions such as when and how to relay. We prove that FedMobile achieves a convergence rate $O(\frac{1}{\sqrt{NT}})$, where $N$ is the number of clients and $T$ is the number of communication slots, and show that the optimal design involves an interesting trade-off on the best timing of relaying. The paper also presents an extension that considers data manipulation before relaying to reduce the cost and enhance privacy. Experiment results on a synthetic dataset and two real-world datasets verify our theoretical findings.
- Abstract(参考訳): 本稿では,モバイルネットワーク環境における非同期フェデレート学習(FL)について述べる。
FLアルゴリズムの大部分は、クライアントとサーバ間の通信が常に可能であると仮定しているが、現実のシステムではそうではない。
そこで本研究では,非同期FLの収束性能に及ぼすモビリティの影響について検討する。
モビリティを活用することで、クライアントはリレーとして機能する別のクライアントを介してサーバと間接的に通信でき、新たな通信機会が生まれる。
これにより、クライアントはより早くローカルモデルの更新をアップロードしたり、より新しいグローバルモデルを受け取ることができる。
我々はFedMobileと呼ばれる新しいFLアルゴリズムを提案し、機会論的リレーを取り入れ、いつ、どのようにリレーするかといった重要な問題に対処する。
我々はFedMobileがコンバージェンスレート$O(\frac{1}{\sqrt{NT}})$を達成することを証明し、$N$はクライアント数、$T$は通信スロット数であることを示す。
また、リレー前にデータ操作を考慮し、コストを削減し、プライバシーを高める拡張も提案する。
合成データセットと実世界の2つのデータセットの実験結果により、我々の理論的な結果が検証された。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
複数のクライアントは、セマンティック解析データを共有せずに、1つのグローバルモデルを協調的にトレーニングする。
Lorarは、各ラウンド中のトレーニング損失の削減に基づいて、グローバルモデル更新に対する各クライアントのコントリビューションを調整する。
より小さなデータセットを持つクライアントは、より大きなパフォーマンス向上を享受する。
論文 参考訳(メタデータ) (2023-05-26T19:25:49Z) - Joint Client Assignment and UAV Route Planning for
Indirect-Communication Federated Learning [20.541942109704987]
FedEx (Federated Learning via Model Express Delivery)と呼ばれる新しいフレームワークが提案されている。
UAVのような移動体トランスポーターを使用して、サーバとクライアント間の間接的な通信チャネルを確立する。
FedEx-SyncとFedEx-Asyncという2つのアルゴリズムがトランスポーターレベルで同期および非同期学習のために提案されている。
論文 参考訳(メタデータ) (2023-04-21T04:47:54Z) - Federated Nearest Neighbor Machine Translation [66.8765098651988]
本稿では,FedNN(FedNN)機械翻訳フレームワークを提案する。
FedNNは1ラウンドの記憶に基づくインタラクションを活用して、異なるクライアント間で知識を共有する。
実験の結果,FedAvgと比較して,FedNNは計算コストと通信コストを著しく削減することがわかった。
論文 参考訳(メタデータ) (2023-02-23T18:04:07Z) - Federated Learning via Indirect Server-Client Communications [20.541942109704987]
Federated Learning(FL)は、コミュニケーション効率とプライバシ保護のための分散機械学習フレームワークである。
本稿では,FedEx という新しい FL フレームワークを提案する。このフレームワークは移動体トランスポーターを用いてサーバとクライアント間の間接的な通信チャネルを確立する。
FedEx-SyncとFedEx-Asyncと呼ばれる2つのアルゴリズムは、トランスポーターが同期または非同期スケジュールを採用するかどうかによって開発される。
論文 参考訳(メタデータ) (2023-02-14T20:12:36Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
非イド分散データに対する局所訓練は、偏向局所最適化をもたらす。
自然な解決策は、サーバがデータ分散全体のグローバルなビューを持つように、すべてのクライアントデータをサーバに収集することです。
本稿では,データプライバシを損なうことなく,サーバ上でのグローバルな知識の収集と活用を図る。
論文 参考訳(メタデータ) (2022-11-20T06:13:06Z) - FedAR: Activity and Resource-Aware Federated Learning Model for
Distributed Mobile Robots [1.332560004325655]
最近提案されたFederated Learning(FL)と呼ばれる機械学習アルゴリズムは、データのプライバシーを維持する道を開く。
本稿では、クライアントのアクティビティを監視し、利用可能なローカルコンピューティングリソースを活用することでFLモデルを提案する。
このような移動ロボットをFLクライアントとみなして,現実の環境での資源制約された動作を理解する。
論文 参考訳(メタデータ) (2021-01-11T05:27:37Z) - RC-SSFL: Towards Robust and Communication-efficient Semi-supervised
Federated Learning System [25.84191221776459]
Federated Learning(FL)は、新たな分散型人工知能パラダイムである。
現在のシステムは、強い前提に大きく依存している: すべてのクライアントは、豊富な真実をラベル付けしたデータを持っている。
実用的ロバスト・コミュニケーション効率の高い半監視FL(RC-SSFL)システム設計を紹介します。
論文 参考訳(メタデータ) (2020-12-08T14:02:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。