論文の概要: Game-Theoretic Neyman-Pearson Detection to Combat Strategic Evasion
- arxiv url: http://arxiv.org/abs/2206.05276v3
- Date: Sat, 16 Nov 2024 21:40:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:04.304676
- Title: Game-Theoretic Neyman-Pearson Detection to Combat Strategic Evasion
- Title(参考訳): 戦略的侵入に対するゲーム理論的Neyman-Pearson検出
- Authors: Yinan Hu, Quanyan Zhu,
- Abstract要約: この研究は、このような回避攻撃に対抗するための全体論的理論を開発することを目的としている。
本稿では,戦略的回避攻撃と回避対応NP検出器の競合関係を捉えるためのゲーム理論フレームワークを提案する。
回避認識型NP検出器は、攻撃者の行動に対して戦略的に行動することができるように、受動型NP検出器よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 13.47548023934913
- License:
- Abstract: The security in networked systems depends greatly on recognizing and identifying adversarial behaviors. Traditional detection methods focus on specific categories of attacks and have become inadequate for increasingly stealthy and deceptive attacks that are designed to bypass detection strategically. This work aims to develop a holistic theory to countermeasure such evasive attacks. We focus on extending a fundamental class of statistical-based detection methods based on Neyman-Pearson's (NP) hypothesis testing formulation. We propose game-theoretic frameworks to capture the conflicting relationship between a strategic evasive attacker and an evasion-aware NP detector. By analyzing both the equilibrium behaviors of the attacker and the NP detector, we characterize their performance using Equilibrium Receiver-Operational-Characteristic (EROC) curves. We show that the evasion-aware NP detectors outperform the passive ones in the way that the former can act strategically against the attacker's behavior and adaptively modify their decision rules based on the received messages. In addition, we extend our framework to a sequential setting where the user sends out identically distributed messages. We corroborate the analytical results with a case study of anomaly detection.
- Abstract(参考訳): ネットワークシステムのセキュリティは、敵の行動を認識し識別することに大きく依存する。
従来の検出方法は特定の攻撃カテゴリに焦点を合わせており、戦略的に検出をバイパスするように設計された盗難や偽装攻撃に不適切になっている。
この研究は、このような回避攻撃に対抗するための全体論的理論を開発することを目的としている。
我々は,Neyman-Pearson(NP)仮説テスト定式化に基づく統計的検出法の基本クラスの拡張に焦点をあてる。
本稿では,戦略的回避攻撃と回避対応NP検出器の競合関係を捉えるためのゲーム理論フレームワークを提案する。
攻撃者とNP検出器の平衡挙動を解析することにより、平衡受信器・操作特性曲線(EROC)を用いてそれらの特性を特徴づける。
本研究では,攻撃者の行動に対して戦略的に行動し,受信したメッセージに基づいて意思決定ルールを適応的に変更できるように,回避対応のNP検出器が受動的検出器よりも優れていることを示す。
さらに、当社のフレームワークを、ユーザが同じ分散メッセージを送信するシーケンシャルな設定に拡張します。
解析結果は異常検出のケーススタディと相関する。
関連論文リスト
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - Defense against Joint Poison and Evasion Attacks: A Case Study of DERMS [2.632261166782093]
IDSの第1の枠組みは, ジョイント中毒や回避攻撃に対して堅牢である。
IEEE-13バスフィードモデルにおける本手法のロバスト性を検証する。
論文 参考訳(メタデータ) (2024-05-05T16:24:30Z) - Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors [0.0]
アダプティブアタックとは、攻撃者が防御を意識し、その戦略を適応させる攻撃である。
提案手法は, クリーンな精度を損なうことなく, 敵の訓練を活用して攻撃を検知する能力を強化する。
CIFAR-10とSVHNデータセットの実験的評価により,提案アルゴリズムは,適応的敵攻撃を正確に識別する検出器の能力を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-04-18T12:13:09Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
バックドア攻撃は、悪質なトリガをDNNモデルに過剰に挿入することを目的としており、テストシナリオ中に不正な制御を許可している。
既存の方法では防衛戦略に対する堅牢性が欠如しており、主に無作為な試薬を無作為に選別しながら、引き金の盗難を強化することに重点を置いている。
信頼性スコアの低いサンプルを選別し、これらの攻撃を識別・対処する上で、守備側の課題を著しく増大させる。
論文 参考訳(メタデータ) (2023-10-08T18:57:36Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
敵対的攻撃は、ディープラーニングアプリケーションに対する安全性とセキュリティ上の懸念を引き起こす。
モデルの勾配一貫性を反映した適応応答特性(ARC)特性を構築する。
私たちの方法は直感的で、軽量で、非侵襲的で、データ不要です。
論文 参考訳(メタデータ) (2022-05-19T14:26:50Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
マルコフ決定過程(MDPs)の制御チャネルにおける最適ステルス毒素攻撃の設計問題について検討する。
この研究は、MDPに適用された敵国・毒殺攻撃や強化学習(RL)手法に対する研究コミュニティの最近の関心に動機づけられている。
論文 参考訳(メタデータ) (2021-09-15T09:13:10Z) - Using Anomaly Feature Vectors for Detecting, Classifying and Warning of
Outlier Adversarial Examples [4.096598295525345]
分類ニューラルネットワークに提示される敵入力を検出し,分類し,警告するシステムであるDeClaWについて述べる。
予備的な発見は、AFVがCIFAR-10データセット上で93%近い精度で、いくつかの種類の敵攻撃を区別するのに役立つことを示唆している。
論文 参考訳(メタデータ) (2021-07-01T16:00:09Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - Adversarial Detection and Correction by Matching Prediction
Distributions [0.0]
この検出器は、MNISTとFashion-MNISTに対するCarini-WagnerやSLIDEのような強力な攻撃をほぼ完全に中和する。
本手法は,攻撃者がモデルと防御の両方について十分な知識を持つホワイトボックス攻撃の場合においても,なおも敵の例を検出することができることを示す。
論文 参考訳(メタデータ) (2020-02-21T15:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。