Superresolution and Segmentation of OCT scans using Multi-Stage
adversarial Guided Attention Training
- URL: http://arxiv.org/abs/2206.05277v1
- Date: Fri, 10 Jun 2022 00:26:55 GMT
- Title: Superresolution and Segmentation of OCT scans using Multi-Stage
adversarial Guided Attention Training
- Authors: Paria Jeihouni, Omid Dehzangi, Annahita Amireskandari, Ali Dabouei,
Ali Rezai, Nasser M. Nasrabadi
- Abstract summary: We propose the multi-stage & multi-discriminatory generative adversarial network (MultiSDGAN) to translate OCT scans in high-resolution segmentation labels.
We evaluate and compare various combinations of channel and spatial attention to the MultiSDGAN architecture to extract more powerful feature maps.
Our results demonstrate relative improvements of 21.44% and 19.45% on the Dice coefficient and SSIM, respectively.
- Score: 18.056525121226862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical coherence tomography (OCT) is one of the non-invasive and
easy-to-acquire biomarkers (the thickness of the retinal layers, which is
detectable within OCT scans) being investigated to diagnose Alzheimer's disease
(AD). This work aims to segment the OCT images automatically; however, it is a
challenging task due to various issues such as the speckle noise, small target
region, and unfavorable imaging conditions. In our previous work, we have
proposed the multi-stage & multi-discriminatory generative adversarial network
(MultiSDGAN) to translate OCT scans in high-resolution segmentation labels. In
this investigation, we aim to evaluate and compare various combinations of
channel and spatial attention to the MultiSDGAN architecture to extract more
powerful feature maps by capturing rich contextual relationships to improve
segmentation performance. Moreover, we developed and evaluated a guided
mutli-stage attention framework where we incorporated a guided attention
mechanism by forcing an L-1 loss between a specifically designed binary mask
and the generated attention maps. Our ablation study results on the WVU-OCT
data-set in five-fold cross-validation (5-CV) suggest that the proposed
MultiSDGAN with a serial attention module provides the most competitive
performance, and guiding the spatial attention feature maps by binary masks
further improves the performance in our proposed network. Comparing the
baseline model with adding the guided-attention, our results demonstrated
relative improvements of 21.44% and 19.45% on the Dice coefficient and SSIM,
respectively.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
We introduce two pathological priors: nuclear disease of cells and spatial correlation of pathological tiles.
We propose a data augmentation method that utilizes stain separation during extractor training.
We then describe the spatial relationships between the tiles using an adjacency matrix.
By integrating these two views, we designed a multi-instance framework for analyzing H&E-stained tissue images.
arXiv Detail & Related papers (2023-07-12T16:14:23Z) - Uncertainty Driven Bottleneck Attention U-net for Organ at Risk
Segmentation [20.865775626533434]
Organ at risk (OAR) segmentation in computed tomography (CT) imagery is a difficult task for automated segmentation methods.
We propose a multiple decoder U-net architecture and use the segmentation disagreement between the decoders as attention to the bottleneck of the network.
For accurate segmentation, we also proposed a CT intensity integrated regularization loss.
arXiv Detail & Related papers (2023-03-19T23:45:32Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes
for Medical Image Super-Resolution [56.622832383316215]
We propose a novel multi-head convolutional attention module to super-resolve CT and MRI scans.
Our attention module uses the convolution operation to perform joint spatial-channel attention on multiple input tensors.
We introduce multiple attention heads, each head having a distinct receptive field size corresponding to a particular reduction rate for the spatial attention.
arXiv Detail & Related papers (2022-04-08T07:56:55Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - MPG-Net: Multi-Prediction Guided Network for Segmentation of Retinal
Layers in OCT Images [11.370735571629602]
We propose a novel multiprediction guided attention network (MPG-Net) for automated retinal layer segmentation in OCT images.
MPG-Net consists of two major steps to strengthen the discriminative power of a U-shape Fully convolutional network (FCN) for reliable automated segmentation.
arXiv Detail & Related papers (2020-09-28T21:22:22Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.