論文の概要: Efficient Human-in-the-loop System for Guiding DNNs Attention
- arxiv url: http://arxiv.org/abs/2206.05981v2
- Date: Tue, 14 Jun 2022 07:53:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-15 12:25:38.956962
- Title: Efficient Human-in-the-loop System for Guiding DNNs Attention
- Title(参考訳): dnnの注意を誘導する効率的なヒューマン・イン・ザ・ループシステム
- Authors: Yi He, Xi Yang, Chia-Ming Chang, Haoran Xie, Takeo Igarashi
- Abstract要約: 本稿では,ユーザが指定した領域に対して,分類器の注意を対話的に誘導する,効率的なHuman-in-the-loopシステムを提案する。
注意誘導のための従来のアプローチでは、ピクセルレベルのアノテーションの準備が必要であり、インタラクティブシステムとして設計されていない。
- 参考スコア(独自算出の注目度): 25.501443892795614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attention guidance is an approach to addressing dataset bias in deep
learning, where the model relies on incorrect features to make decisions.
Focusing on image classification tasks, we propose an efficient
human-in-the-loop system to interactively direct the attention of classifiers
to the regions specified by users, thereby reducing the influence of
co-occurrence bias and improving the transferability and interpretability of a
DNN. Previous approaches for attention guidance require the preparation of
pixel-level annotations and are not designed as interactive systems. We present
a new interactive method to allow users to annotate images with simple clicks,
and study a novel active learning strategy to significantly reduce the number
of annotations. We conducted both a numerical evaluation and a user study to
evaluate the proposed system on multiple datasets. Compared to the existing
non-active-learning approach which usually relies on huge amounts of
polygon-based segmentation masks to fine-tune or train the DNNs, our system can
save lots of labor and money and obtain a fine-tuned network that works better
even when the dataset is biased. The experiment results indicate that the
proposed system is efficient, reasonable, and reliable.
- Abstract(参考訳): 注意指導は、ディープラーニングにおけるデータセットバイアスに対処するためのアプローチであり、モデルが決定を下すのに誤った機能に依存している。
画像分類タスクに着目し,ユーザが指定した領域への分類器の注意を対話的に誘導し,共起バイアスの影響を低減し,DNNの伝達性と解釈性を向上させる。
注意誘導のための従来のアプローチでは、ピクセルレベルのアノテーションの準備が必要であり、インタラクティブシステムとして設計されていない。
本稿では,ユーザが簡単なクリックで画像に注釈を付けるための新しい対話的手法と,アノテーション数を大幅に減らすための新しいアクティブラーニング戦略を提案する。
提案システムを複数のデータセット上で評価するために,数値評価とユーザ調査を行った。
通常、大量のポリゴンベースのセグメンテーションマスクを使用して微調整やDNNの訓練を行う既存の非アクティブラーニングアプローチと比較して、我々のシステムは多くの労力とお金を節約し、データセットにバイアスがかかってもよりうまく機能する微調整ネットワークを得ることができる。
実験結果から,提案システムの有効性,妥当性,信頼性が示唆された。
関連論文リスト
- Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
近年のインタラクティブセグメンテーション手法では,入力としてソースイメージ,ユーザガイダンス,従来予測されていたマスクを反復的に取り込んでいる。
本稿では,本質的な相違点に基づいてモデリングコンポーネントを分離するFDRN(Feature Decoupling-Recycling Network)を提案する。
論文 参考訳(メタデータ) (2023-08-07T12:26:34Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
グラフニューラルネットワーク(GNN)ベースの手法は、レコメンダシステムの分野を飽和させた。
我々は,GNNの学習を支援するために,グラフ上で個別の公平性を促進させる既存手法を拡張した。
本研究では,局所ニュアンスが表現学習における公平化促進の過程を導くことによって,ミニバッチトレーニングが個人の公正化を促進することを示す。
論文 参考訳(メタデータ) (2022-09-08T16:20:25Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Partition-Based Active Learning for Graph Neural Networks [17.386869902409153]
グラフニューラルネットワーク(GNN)を用いた半教師あり学習の課題を,アクティブな学習環境において検討する。
GNNのための新しいパーティションベースのアクティブラーニングアプローチであるGraphPartを提案する。
論文 参考訳(メタデータ) (2022-01-23T22:51:14Z) - Improving Prediction Confidence in Learning-Enabled Autonomous Systems [2.66512000865131]
予測の信頼性を向上させるために,分類に使用される学習可能なコンポーネントと自律システムのセンサとのフィードバックループを利用する。
本稿では,三重項ネットワークアーキテクチャに基づく帰納的等角予測(ICP)を用いた分類器を設計し,テスト例とトレーニング例の類似性を定量化するための表現を学習する。
センサに新しい入力を問い合わせるフィードバックループを使用して、予測をさらに洗練し、分類精度を高める。
論文 参考訳(メタデータ) (2021-10-07T00:40:34Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-08-16T19:35:43Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Improved Representation Learning for Session-based Recommendation [0.0]
セッションベースのレコメンデーションシステムは、短期匿名セッションを用いてユーザの行動や嗜好をモデル化することで、ユーザに対して関連項目を提案する。
既存の方法はグラフニューラルネットワーク(GNN)を利用して、近隣のノードから情報を伝達し集約する。
我々は、よりリッチな表現学習を可能にする目標注意型GNNと組み合わせてトランスフォーマーを提案する。
論文 参考訳(メタデータ) (2021-07-04T00:57:28Z) - Hierarchical and Efficient Learning for Person Re-Identification [19.172946887940874]
階層的大域的, 部分的, 回復的特徴を複数の損失結合の監督の下で学習する, 階層的, 効率的なネットワーク(HENet)を提案する。
また,RPE (Random Polygon Erasing) と呼ばれる新しいデータセット拡張手法を提案する。
論文 参考訳(メタデータ) (2020-05-18T15:45:25Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。