Translating automated brain tumour phenotyping to clinical neuroimaging
- URL: http://arxiv.org/abs/2206.06120v1
- Date: Mon, 13 Jun 2022 12:58:54 GMT
- Title: Translating automated brain tumour phenotyping to clinical neuroimaging
- Authors: James K Ruffle, Samia Mohinta, Robert J Gray, Harpreet Hyare,
Parashkev Nachev
- Abstract summary: We use state-of-the-art methods to quantify the comparative fidelity of automated tumour segmentation models.
Deep learning segmentation models characterize tumours well when missing data and can even detect enhancing tissue without the use of contrast.
- Score: 0.4199844472131921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: The complex heterogeneity of brain tumours is increasingly
recognized to demand data of magnitudes and richness only fully-inclusive,
large-scale collections drawn from routine clinical care could plausibly offer.
This is a task contemporary machine learning could facilitate, especially in
neuroimaging, but its ability to deal with incomplete data common in real world
clinical practice remains unknown. Here we apply state-of-the-art methods to
large scale, multi-site MRI data to quantify the comparative fidelity of
automated tumour segmentation models replicating the various levels of
completeness observed in clinical reality.
Methods: We compare deep learning (nnU-Net-derived) tumour segmentation
models with all possible combinations of T1, contrast-enhanced T1, T2, and
FLAIR imaging sequences, trained and validated with five-fold cross-validation
on the 2021 BraTS-RSNA glioma population of 1251 patients, and tested on a
diverse, real-world 50 patient sample.
Results: Models trained on incomplete data segmented lesions well, often
equivalently to those trained on complete data, exhibiting Dice coefficients of
0.907 (single sequence) to 0.945 (full datasets) for whole tumours, and 0.701
(single sequence) to 0.891 (full datasets) for component tissue types.
Incomplete data segmentation models could accurately detect enhancing tumour in
the absence of contrast imaging, quantifying its volume with an R2 between
0.95-0.97.
Conclusions: Deep learning segmentation models characterize tumours well when
missing data and can even detect enhancing tissue without the use of contrast.
This suggests translation to clinical practice, where incomplete data is
common, may be easier than hitherto believed, and may be of value in reducing
dependence on contrast use.
Related papers
- Deep learning-based auto-contouring of organs/structures-at-risk for pediatric upper abdominal radiotherapy [0.0]
The aim was to develop a CT-based multi-organ segmentation model for delineating organs-at-risk (OARs) in pediatric upper abdominal tumors.
Performance was assessed with Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD95), and mean surface distance (MSD)
Model-PMC-UMCU achieved mean DSC values above 0.95 for five of nine OARs, while spleen and heart ranged between 0.90 and 0.95.
The stomach-bowel and pancreas exhibited DSC values below 0.90.
arXiv Detail & Related papers (2024-11-01T13:54:31Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Quantifying uncertainty in lung cancer segmentation with foundation models applied to mixed-domain datasets [6.712251433139412]
Medical image foundation models have shown the ability to segment organs and tumors with minimal fine-tuning.
These models are typically evaluated on task-specific in-distribution (ID) datasets.
We introduced a comprehensive set of computationally fast metrics to evaluate the performance of multiple foundation models trained with self-supervised learning (SSL)
SMIT produced a highest F1-score (LRAD: 0.60, 5Rater: 0.64) and lowest entropy (LRAD: 0.06, 5Rater: 0.12), indicating higher tumor detection rate and confident segmentations.
arXiv Detail & Related papers (2024-03-19T19:36:48Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Examining the behaviour of state-of-the-art convolutional neural
networks for brain tumor detection with and without transfer learning [0.0]
Two different kinds of dataset are investigated using state-of-the-art CNN models in this research work.
The EfficientNet-B5 architecture outperforms all the state-of-the-art models in the binary-classification dataset with the accuracy of 99.75% and 98.61% accuracy for the multi-class dataset.
arXiv Detail & Related papers (2022-06-02T18:49:28Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.