Deep learning-based auto-contouring of organs/structures-at-risk for pediatric upper abdominal radiotherapy
- URL: http://arxiv.org/abs/2411.00594v1
- Date: Fri, 01 Nov 2024 13:54:31 GMT
- Title: Deep learning-based auto-contouring of organs/structures-at-risk for pediatric upper abdominal radiotherapy
- Authors: Mianyong Ding, Matteo Maspero, Annemieke S Littooij, Martine van Grotel, Raquel Davila Fajardo, Max M van Noesel, Marry M van den Heuvel-Eibrink, Geert O Janssens,
- Abstract summary: The aim was to develop a CT-based multi-organ segmentation model for delineating organs-at-risk (OARs) in pediatric upper abdominal tumors.
Performance was assessed with Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD95), and mean surface distance (MSD)
Model-PMC-UMCU achieved mean DSC values above 0.95 for five of nine OARs, while spleen and heart ranged between 0.90 and 0.95.
The stomach-bowel and pancreas exhibited DSC values below 0.90.
- Score: 0.0
- License:
- Abstract: Purposes: This study aimed to develop a computed tomography (CT)-based multi-organ segmentation model for delineating organs-at-risk (OARs) in pediatric upper abdominal tumors and evaluate its robustness across multiple datasets. Materials and methods: In-house postoperative CTs from pediatric patients with renal tumors and neuroblastoma (n=189) and a public dataset (n=189) with CTs covering thoracoabdominal regions were used. Seventeen OARs were delineated: nine by clinicians (Type 1) and eight using TotalSegmentator (Type 2). Auto-segmentation models were trained using in-house (ModelPMC-UMCU) and a combined dataset of public data (Model-Combined). Performance was assessed with Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD95), and mean surface distance (MSD). Two clinicians rated clinical acceptability on a 5-point Likert scale across 15 patient contours. Model robustness was evaluated against sex, age, intravenous contrast, and tumor type. Results: Model-PMC-UMCU achieved mean DSC values above 0.95 for five of nine OARs, while spleen and heart ranged between 0.90 and 0.95. The stomach-bowel and pancreas exhibited DSC values below 0.90. Model-Combined demonstrated improved robustness across both datasets. Clinical evaluation revealed good usability, with both clinicians rating six of nine Type 1 OARs above four and six of eight Type 2 OARs above three. Significant performance 2 differences were only found across age groups in both datasets, specifically in the left lung and pancreas. The 0-2 age group showed the lowest performance. Conclusion: A multi-organ segmentation model was developed, showcasing enhanced robustness when trained on combined datasets. This model is suitable for various OARs and can be applied to multiple datasets in clinical settings.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MRSegmentator: Multi-Modality Segmentation of 40 Classes in MRI and CT [29.48170108608303]
The model was trained on 1,200 manually annotated 3D axial MRI scans from the UK Biobank, 221 in-house MRI scans, and 1228 CT scans.
It demonstrated high accuracy for well-defined organs (lungs: DSC 0.96, heart: DSC 0.94) and organs with anatomic variability (liver: DSC 0.96, kidneys: DSC 0.95)
It generalized well to CT, achieving DSC mean of 0.84 $pm$ 0.11 on AMOS CT data.
arXiv Detail & Related papers (2024-05-10T13:15:42Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - A Generalizable Artificial Intelligence Model for COVID-19
Classification Task Using Chest X-ray Radiographs: Evaluated Over Four
Clinical Datasets with 15,097 Patients [6.209420804714487]
The generalizability of the trained model was retrospectively evaluated using four different real-world clinical datasets.
The AI model trained using a single-source clinical dataset achieved an AUC of 0.82 when applied to the internal temporal test set.
An AUC of 0.79 was achieved when applied to a multi-institutional COVID-19 dataset collected by the Medical Imaging and Data Resource Center.
arXiv Detail & Related papers (2022-10-04T04:12:13Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Translating automated brain tumour phenotyping to clinical neuroimaging [0.4199844472131921]
We use state-of-the-art methods to quantify the comparative fidelity of automated tumour segmentation models.
Deep learning segmentation models characterize tumours well when missing data and can even detect enhancing tissue without the use of contrast.
arXiv Detail & Related papers (2022-06-13T12:58:54Z) - Multi-institutional Validation of Two-Streamed Deep Learning Method for
Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and
FDG-PETCT [14.312659667401302]
Current clinical workflow for esophageal gross tumor volume (GTV) contouring relies on manual delineation of high labor-costs and interuser variability.
To validate the clinical applicability of a deep learning (DL) multi-modality esophageal GTV contouring model, developed at 1 institution whereas tested at multiple ones.
arXiv Detail & Related papers (2021-10-11T13:56:09Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
This work presents a Deep Learning method based on the late fusion of different convolutional architectures.
We built four training datasets combining images from public chest x-ray datasets and our institutional archive.
We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool.
arXiv Detail & Related papers (2020-12-23T14:38:35Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
This study aims to develop and validate a novel framework, iPhantom, for automated creation of patient-specific phantoms or digital-twins.
The framework is applied to assess radiation dose to radiosensitive organs in CT imaging of individual patients.
iPhantom precisely predicted all organ locations with good accuracy of Dice Similarity Coefficients (DSC) >0.6 for anchor organs and DSC of 0.3-0.9 for all other organs.
arXiv Detail & Related papers (2020-08-20T01:50:49Z) - Deep Learning to Quantify Pulmonary Edema in Chest Radiographs [7.121765928263759]
We developed a machine learning model to classify the severity grades of pulmonary edema on chest radiographs.
Deep learning models were trained on a large chest radiograph dataset.
arXiv Detail & Related papers (2020-08-13T15:45:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.