A Synapse-Threshold Synergistic Learning Approach for Spiking Neural
Networks
- URL: http://arxiv.org/abs/2206.06129v3
- Date: Mon, 3 Apr 2023 08:12:25 GMT
- Title: A Synapse-Threshold Synergistic Learning Approach for Spiking Neural
Networks
- Authors: Hongze Sun, Wuque Cai, Baoxin Yang, Yan Cui, Yang Xia, Dezhong Yao,
Daqing Guo
- Abstract summary: Spiking neural networks (SNNs) have demonstrated excellent capabilities in various intelligent scenarios.
In this study, we develop a novel synergistic learning approach that involves simultaneously training synaptic weights and spike thresholds in SNNs.
- Score: 1.8556712517882232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) have demonstrated excellent capabilities in
various intelligent scenarios. Most existing methods for training SNNs are
based on the concept of synaptic plasticity; however, learning in the realistic
brain also utilizes intrinsic non-synaptic mechanisms of neurons. The spike
threshold of biological neurons is a critical intrinsic neuronal feature that
exhibits rich dynamics on a millisecond timescale and has been proposed as an
underlying mechanism that facilitates neural information processing. In this
study, we develop a novel synergistic learning approach that involves
simultaneously training synaptic weights and spike thresholds in SNNs. SNNs
trained with synapse-threshold synergistic learning~(STL-SNNs) achieve
significantly superior performance on various static and neuromorphic datasets
than SNNs trained with two degenerated single-learning models. During training,
the synergistic learning approach optimizes neural thresholds, providing the
network with stable signal transmission via appropriate firing rates. Further
analysis indicates that STL-SNNs are robust to noisy data and exhibit low
energy consumption for deep network structures. Additionally, the performance
of STL-SNN can be further improved by introducing a generalized joint decision
framework. Overall, our findings indicate that biologically plausible synergies
between synaptic and intrinsic non-synaptic mechanisms may provide a promising
approach for developing highly efficient SNN learning methods.
Related papers
- Training Spiking Neural Networks via Augmented Direct Feedback Alignment [3.798885293742468]
Spiking neural networks (SNNs) are promising solutions for implementing neural networks in neuromorphic devices.
However, the nondifferentiable nature of SNN neurons makes it a challenge to train them.
In this paper, we propose using augmented direct feedback alignment (aDFA), a gradient-free approach based on random projection, to train SNNs.
arXiv Detail & Related papers (2024-09-12T06:22:44Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Direct Training High-Performance Deep Spiking Neural Networks: A Review of Theories and Methods [33.377770671553336]
Spiking neural networks (SNNs) offer a promising energy-efficient alternative to artificial neural networks (ANNs)
In this paper, we provide a new perspective to summarize the theories and methods for training deep SNNs with high performance.
arXiv Detail & Related papers (2024-05-06T09:58:54Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks (SNNs) are the third generation of artificial neural networks that enable energy-efficient implementation on neuromorphic hardware.
We propose a robust and effective learning mechanism by modeling the associative plasticity between synapses.
Our approaches achieve superior performance on static and state-of-the-art neuromorphic datasets.
arXiv Detail & Related papers (2022-07-24T06:12:23Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability.
This paper establishes a precise mathematical mapping between the biological parameters of the Linear Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep Neural Networks (DNNs)
arXiv Detail & Related papers (2022-05-31T17:02:26Z) - SIT: A Bionic and Non-Linear Neuron for Spiking Neural Network [12.237928453571636]
Spiking Neural Networks (SNNs) have piqued researchers' interest because of their capacity to process temporal information and low power consumption.
Current state-of-the-art methods limited their biological plausibility and performance because their neurons are generally built on the simple Leaky-Integrate-and-Fire (LIF) model.
Due to the high level of dynamic complexity, modern neuron models have seldom been implemented in SNN practice.
arXiv Detail & Related papers (2022-03-30T07:50:44Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.