論文の概要: AI-based Data Preparation and Data Analytics in Healthcare: The Case of
Diabetes
- arxiv url: http://arxiv.org/abs/2206.06182v1
- Date: Mon, 13 Jun 2022 14:13:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-14 17:52:19.608618
- Title: AI-based Data Preparation and Data Analytics in Healthcare: The Case of
Diabetes
- Title(参考訳): 医療におけるaiベースのデータ準備とデータ分析:糖尿病の事例
- Authors: Marianna Maranghi, Aris Anagnostopoulos, Irene Cannistraci, Ioannis
Chatzigiannakis, Federico Croce, Giulia Di Teodoro, Michele Gentile, Giorgio
Grani, Maurizio Lenzerini, Stefano Leonardi, Andrea Mastropietro, Laura
Palagi, Massimiliano Pappa, Riccardo Rosati, Riccardo Valentini, Paola
Velardi
- Abstract要約: Associazione Medici Diabetologi (AMD)は、AMDデータベースとしても知られる、世界最大規模の糖尿病患者の記録を収集し、管理している。
本稿では、人工知能と機械学習の技術を応用して、そのような重要で価値のあるデータセットを概念化し、クリーニングし、分析することに焦点を当てた、現在進行中のプロジェクトの最初の成果を示す。
- 参考スコア(独自算出の注目度): 10.307863191143635
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Associazione Medici Diabetologi (AMD) collects and manages one of the
largest worldwide-available collections of diabetic patient records, also known
as the AMD database. This paper presents the initial results of an ongoing
project whose focus is the application of Artificial Intelligence and Machine
Learning techniques for conceptualizing, cleaning, and analyzing such an
important and valuable dataset, with the goal of providing predictive insights
to better support diabetologists in their diagnostic and therapeutic choices.
- Abstract(参考訳): Associazione Medici Diabetologi (AMD)は、AMDデータベースとしても知られる、世界最大規模の糖尿病患者の記録を収集し管理している。
本稿では,これらの重要かつ価値のあるデータセットを概念化し,クリーニングし,分析するための人工知能と機械学習技術の活用に焦点をあてた,現在進行中のプロジェクトの初期成果について述べる。
関連論文リスト
- An adapted large language model facilitates multiple medical tasks in diabetes care [20.096444964141508]
大規模言語モデル(LLM)は、様々な医療シナリオにおいて有望であるが、様々な糖尿病タスクにおけるその効果は証明されていない。
本研究は糖尿病特異的LSMを訓練し、検証するための枠組みを導入した。
論文 参考訳(メタデータ) (2024-09-20T03:47:54Z) - Federated Diabetes Prediction in Canadian Adults Using Real-world Cross-Province Primary Care Data [0.04090757602725897]
本稿では,集中型データストレージや処理を使わずに予測モデルを統合化することで,プライバシの問題を回避するためのフェデレーション学習手法を提案する。
これは、カナダプライマリケアセンチネル監視ネットワーク(CPCSSN)から抽出された実際の臨床データセットを使用して、患者データを共有することなく糖尿病を予測するためのフェデレーションラーニングの最初の応用である。
論文 参考訳(メタデータ) (2024-08-21T22:47:21Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Data-Centric Foundation Models in Computational Healthcare: A Survey [21.53211505568379]
AI技術の新たなスイートとしてのファンデーションモデル(FM)は、計算医療の波を巻き起こしている。
我々は、AIセキュリティ、アセスメント、および人間の価値との整合性における重要な視点について議論する。
本報告では,患者の予後と臨床ワークフローを向上するために,FMベースの分析を期待できる展望を提供する。
論文 参考訳(メタデータ) (2024-01-04T08:00:32Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
ディープラーニングモデルは、意味のあるパターンを抽出する際の約束を示すが、広範囲なラベル付きデータが必要である。
本稿では,臨床測定値とノートのアライメントに着目し,自己指導型事前学習を用いた新しいアプローチを提案する。
病院内での死亡予測や表現型化などの下流タスクでは、データのごく一部がラベル付けされた設定において、ベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T21:53:40Z) - DiaTrend: A dataset from advanced diabetes technology to enable
development of novel analytic solutions [0.0]
このデータセットは、合計27,561日連続血糖測定データと、糖尿病患者54人のインスリンポンプデータ8,220日を含む、ウェアラブル医療機器からの集中的な経時的データで構成されている。
このデータセットは、糖尿病患者の疾患負担を軽減し、外来患者の慢性的な状態管理に関する知識を増大させる新しい分析ソリューションの開発に有用である。
論文 参考訳(メタデータ) (2023-04-04T00:59:04Z) - Medical Pathologies Prediction : Systematic Review and Proposed Approach [0.0]
我々は、医療改善のためのビッグデータ、人工知能、機械学習、ディープラーニングなど、最新の技術の活用に関するさまざまな研究を分析し、検討した。
本稿では,医療データの収集,前処理,クラスタリングに着目した一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-01T13:35:17Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。