論文の概要: Advances in Artificial Intelligence forDiabetes Prediction: Insights from a Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2412.14736v1
- Date: Thu, 19 Dec 2024 11:09:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:36.355319
- Title: Advances in Artificial Intelligence forDiabetes Prediction: Insights from a Systematic Literature Review
- Title(参考訳): 糖尿病予測のための人工知能の進歩:体系的文献レビューから
- Authors: Pir Bakhsh Khokhar, Carmine Gravino, Fabio Palomba,
- Abstract要約: この体系的なレビューでは、データセット、アルゴリズム、トレーニング方法、評価指標に重点を置いた、糖尿病の予測における機械学習(ML)の使用について検討する。
このレビューは、CNN、SVM、ロジスティック回帰、XGBoostといったMLアルゴリズムのパフォーマンスを糖尿病の結果を予測するために評価する。
- 参考スコア(独自算出の注目度): 8.984498754808792
- License:
- Abstract: This systematic review explores the use of machine learning (ML) in predicting diabetes, focusing on datasets, algorithms, training methods, and evaluation metrics. It examines datasets like the Singapore National Diabetic Retinopathy Screening program, REPLACE-BG, National Health and Nutrition Examination Survey, and Pima Indians Diabetes Database. The review assesses the performance of ML algorithms like CNN, SVM, Logistic Regression, and XGBoost in predicting diabetes outcomes. The study emphasizes the importance of interdisciplinary collaboration and ethical considerations in ML-based diabetes prediction models.
- Abstract(参考訳): この体系的なレビューでは、データセット、アルゴリズム、トレーニング方法、評価指標に重点を置いた、糖尿病の予測における機械学習(ML)の使用について検討する。
シンガポール国立糖尿病網膜症スクリーニングプログラム、REPLACE-BG、National Health and Nutrition Examination Survey、Pima Indians Diabetes Databaseなどのデータセットを検査する。
このレビューは、CNN、SVM、ロジスティック回帰、XGBoostといったMLアルゴリズムのパフォーマンスを糖尿病の結果を予測するために評価する。
本研究は,MLベースの糖尿病予測モデルにおける学際的協調と倫理的考察の重要性を強調した。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - An adapted large language model facilitates multiple medical tasks in diabetes care [20.096444964141508]
大規模言語モデル(LLM)は、様々な医療シナリオにおいて有望であるが、様々な糖尿病タスクにおけるその効果は証明されていない。
本研究は糖尿病特異的LSMを訓練し、検証するための枠組みを導入した。
論文 参考訳(メタデータ) (2024-09-20T03:47:54Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
論文 参考訳(メタデータ) (2023-04-05T12:04:55Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
医療におけるプライバシー保護機械学習(PPML)に関する最近の文献を概観する。
プライバシ保護トレーニングと推論・アズ・ア・サービスに重点を置いています。
このレビューの目的は、医療におけるプライベートかつ効率的なMLモデルの開発をガイドすることである。
論文 参考訳(メタデータ) (2023-03-27T19:20:51Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
糖尿病の急激な増加は、糖尿病の発生を予防・予測するために予防措置を取る必要があることを要求する。
本稿では,IoT-エッジクラウド統合コンピューティングシステムにおける2型糖尿病予測のための機械学習ベースのスマートヘルスケアフレームワークであるHealthEdgeを提案する。
論文 参考訳(メタデータ) (2023-01-25T07:57:18Z) - Secure and Privacy-Preserving Automated Machine Learning Operations into
End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring
System for Diabetes Mellitus Prediction [0.5825410941577593]
本稿では,危険因子に基づく糖尿病予測のためのIoT-edge-Artificial Intelligence (AI)-blockchainシステムを提案する。
提案システムはブロックチェーンによって支えられ、異なる病院の患者からリスクファクターデータの密集したビューを得る。
提案システムでは,最も正確なランダム林モデルを用いて,数値実験と比較解析を行った。
論文 参考訳(メタデータ) (2022-11-13T13:57:14Z) - AI-based Data Preparation and Data Analytics in Healthcare: The Case of
Diabetes [10.307863191143635]
Associazione Medici Diabetologi (AMD)は、AMDデータベースとしても知られる、世界最大規模の糖尿病患者の記録を収集し、管理している。
本稿では、人工知能と機械学習の技術を応用して、そのような重要で価値のあるデータセットを概念化し、クリーニングし、分析することに焦点を当てた、現在進行中のプロジェクトの最初の成果を示す。
論文 参考訳(メタデータ) (2022-06-13T14:13:15Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。