論文の概要: Chronic Disease Diagnoses Using Behavioral Data
- arxiv url: http://arxiv.org/abs/2410.03386v1
- Date: Fri, 4 Oct 2024 12:52:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:39:00.330765
- Title: Chronic Disease Diagnoses Using Behavioral Data
- Title(参考訳): 行動データを用いた慢性疾患診断
- Authors: Di Wang, Yidan Hu, Eng Sing Lee, Hui Hwang Teong, Ray Tian Rui Lai, Wai Han Hoi, Chunyan Miao,
- Abstract要約: 高血糖(糖尿病)、高脂血症、高血圧(総称3H)を独自の行動データを用いて診断することを目的としている。
- 参考スコア(独自算出の注目度): 42.96592744768303
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Early detection of chronic diseases is beneficial to healthcare by providing a golden opportunity for timely interventions. Although numerous prior studies have successfully used machine learning (ML) models for disease diagnoses, they highly rely on medical data, which are scarce for most patients in the early stage of the chronic diseases. In this paper, we aim to diagnose hyperglycemia (diabetes), hyperlipidemia, and hypertension (collectively known as 3H) using own collected behavioral data, thus, enable the early detection of 3H without using medical data collected in clinical settings. Specifically, we collected daily behavioral data from 629 participants over a 3-month study period, and trained various ML models after data preprocessing. Experimental results show that only using the participants' uploaded behavioral data, we can achieve accurate 3H diagnoses: 80.2\%, 71.3\%, and 81.2\% for diabetes, hyperlipidemia, and hypertension, respectively. Furthermore, we conduct Shapley analysis on the trained models to identify the most influential features for each type of diseases. The identified influential features are consistent with those reported in the literature.
- Abstract(参考訳): 慢性疾患の早期発見は、タイムリーな介入の黄金の機会を提供することによって、医療にとって有益である。
多くの先行研究は、疾患の診断に機械学習(ML)モデルを使うことに成功しているが、医療データに大きく依存しており、慢性疾患の初期段階のほとんどの患者には不十分である。
本稿では, 糖尿病, 高脂血症, 高血圧症(総称して3H) の診断を, 臨床現場で収集した医療データを用いることなく早期に3Hの検出を可能にすることを目的とする。
具体的には、3ヶ月の学習期間で629人の被験者から毎日の行動データを収集し、データ前処理後のさまざまなMLモデルを訓練した。
実験の結果, 糖尿病, 高脂血症, 高血圧の3H診断は, それぞれ80.2\%, 71.3\%, 81.2\%であった。
さらに、訓練されたモデル上でShapley分析を行い、疾患の種類ごとに最も影響のある特徴を特定する。
特定された影響力のある特徴は、文献で報告された特徴と一致している。
関連論文リスト
- Pre-Ictal Seizure Prediction Using Personalized Deep Learning [0.0]
世界中で約2300万ないし30%のてんかん患者が薬剤抵抗性てんかん(DRE)を患っている
発作発生の予測不可能さは、安全上の問題や社会的懸念を引き起こし、DRE患者のライフスタイルを制限している。
本研究の目的は、開始から最大2時間前に発作を予測するための改良された技術と方法を使用することであった。
論文 参考訳(メタデータ) (2024-10-07T21:04:41Z) - Effect of Clinical History on Predictive Model Performance for Renal Complications of Diabetes [1.4330510916280879]
糖尿病は糖尿病性腎症の発症リスクが高いという特徴を持つ慢性疾患である。
このような合併症やその悪化のリスクを高める個人を早期に同定することは、適切な治療方針を設定する上で非常に重要である。
糖尿病患者に対する臨床関連糸球体濾過率(eGFR)閾値の交差を予測・予測するロジスティック回帰モデルを開発した。
論文 参考訳(メタデータ) (2024-09-10T20:27:00Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
本稿では,レアな疾患の診断におけるLarge Language Models (LLMs) の性能を評価するために,レアな疾患問合せデータセット(ReDis-QA)を導入する。
ReDis-QAデータセットでは1360の高品質な質問応答ペアを収集し,205の稀な疾患をカバーした。
その後、いくつかのオープンソースのLCMをベンチマークし、希少疾患の診断がこれらのモデルにとって重要な課題であることを示した。
実験の結果,ReCOPは,ReDis-QAデータセット上でのLCMの精度を平均8%向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-15T21:09:09Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Large Language Multimodal Models for 5-Year Chronic Disease Cohort Prediction Using EHR Data [15.474201222908107]
糖尿病などの慢性疾患が世界中で致死率と死亡率の主な原因となっている。
我々は,慢性疾患リスクの予測にマルチモーダルデータを組み込んだLarge Language Multimodal Models (LLMMs) フレームワークを提案する。
本手法では, テキスト埋め込みエンコーダとマルチヘッドアテンション層を組み合わせて, 深層ニューラルネットワーク(DNN)モジュールを用いて, 血液の特徴と慢性疾患のセマンティクスを潜在空間にマージする。
論文 参考訳(メタデータ) (2024-03-02T22:33:17Z) - Deterioration Prediction using Time-Series of Three Vital Signs and
Current Clinical Features Amongst COVID-19 Patients [6.1594622252295474]
今後3~24時間で患者が悪化するかどうかを予測できる予後モデルを構築した。
このモデルは、(a)酸素飽和度、(b)心拍数、(c)温度という、通常の三進的なバイタルサインを処理する。
ニューヨーク・ラングーン・ヘルスで37,006人のCOVID-19患者から収集したデータを用いて、モデルを訓練し、評価した。
論文 参考訳(メタデータ) (2022-10-12T02:53:43Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - Supervised multi-specialist topic model with applications on large-scale
electronic health record data [3.322262654060203]
本研究では,MixEHR-Sを,EHRデータから専門分野別トピックを共同推定する。
効率的な推論のために,閉形式崩壊変分推論アルゴリズムを開発した。
MixEHR-Sは3つの応用において、最も予測可能な潜在トピックの中で臨床的に有意義な潜在トピックを授与した。
論文 参考訳(メタデータ) (2021-05-04T01:27:11Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。