Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution
Network
- URL: http://arxiv.org/abs/2206.06264v1
- Date: Mon, 13 Jun 2022 15:47:38 GMT
- Title: Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution
Network
- Authors: Nikhil Kumar Tomar, Abhishek Srivastava, Ulas Bagci, Debesh Jha
- Abstract summary: In this study, we introduce a novel deep learning architecture, named textbfMKDCNet, for automatic polyp segmentation.
Experiments on four publicly available polyp datasets and cell nuclei dataset show that the proposed MKDCNet outperforms the state-of-the-art methods.
MKDCNet can be a strong benchmark for building real-time systems for clinical colonoscopies.
- Score: 3.1374864575817214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detection and removal of precancerous polyps through colonoscopy is the
primary technique for the prevention of colorectal cancer worldwide. However,
the miss rate of colorectal polyp varies significantly among the endoscopists.
It is well known that a computer-aided diagnosis (CAD) system can assist
endoscopists in detecting colon polyps and minimize the variation among
endoscopists. In this study, we introduce a novel deep learning architecture,
named {\textbf{MKDCNet}}, for automatic polyp segmentation robust to
significant changes in polyp data distribution. MKDCNet is simply an
encoder-decoder neural network that uses the pre-trained \textit{ResNet50} as
the encoder and novel \textit{multiple kernel dilated convolution (MKDC)} block
that expands the field of view to learn more robust and heterogeneous
representation. Extensive experiments on four publicly available polyp datasets
and cell nuclei dataset show that the proposed MKDCNet outperforms the
state-of-the-art methods when trained and tested on the same dataset as well
when tested on unseen polyp datasets from different distributions. With rich
results, we demonstrated the robustness of the proposed architecture. From an
efficiency perspective, our algorithm can process at ($\approx45$) frames per
second on RTX 3090 GPU. MKDCNet can be a strong benchmark for building
real-time systems for clinical colonoscopies. The code of the proposed MKDCNet
is available at \url{https://github.com/nikhilroxtomar/MKDCNet}.
Related papers
- BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation [0.6062751776009752]
This research presents BetterNet, a convolutional neural network architecture that combines residual learning and attention methods to enhance the accuracy of polyp segmentation.
BetterNet shows promise in integrating computer-assisted diagnosis techniques to enhance the detection of polyps and the early recognition of cancer.
arXiv Detail & Related papers (2024-05-05T21:08:49Z) - TransNetR: Transformer-based Residual Network for Polyp Segmentation
with Multi-Center Out-of-Distribution Testing [2.3293678240472517]
We propose a novel real-time deep learning based architecture, Transformer based Residual network (TransNetR) for colon polyp segmentation.
TransNetR is an encoder-decoder network that consists of a pre-trained ResNet50 as the encoder, three decoder blocks, and an upsampling layer at the end of the network.
It obtains a high dice coefficient of 0.8706 and a mean Intersection over union of 0.8016 and retains a real-time processing speed of 54.60 on the Kvasir-SEG dataset.
arXiv Detail & Related papers (2023-03-13T19:11:17Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - DilatedSegNet: A Deep Dilated Segmentation Network for Polyp
Segmentation [2.6179759969345002]
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide.
Powered by deep learning, computer-aided diagnosis (CAD) systems can detect regions in the colon overlooked by physicians during colonoscopy.
Lacking high accuracy and real-time speed are the essential obstacles to be overcome for successful clinical integration of such systems.
arXiv Detail & Related papers (2022-10-24T20:36:30Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - Towards a Computed-Aided Diagnosis System in Colonoscopy: Automatic
Polyp Segmentation Using Convolution Neural Networks [10.930181796935734]
We present a deep learning framework for recognizing lesions in colonoscopy and capsule endoscopy images.
To our knowledge, we present the first work to use FCNs for polyp segmentation in addition to proposing a novel combination of SfS and RGB that boosts performance.
arXiv Detail & Related papers (2021-01-15T10:08:53Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.