論文の概要: MMMNA-Net for Overall Survival Time Prediction of Brain Tumor Patients
- arxiv url: http://arxiv.org/abs/2206.06267v1
- Date: Mon, 13 Jun 2022 15:51:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-14 18:04:15.650584
- Title: MMMNA-Net for Overall Survival Time Prediction of Brain Tumor Patients
- Title(参考訳): 脳腫瘍患者の生存時間予測のためのMMMNA-Net
- Authors: Wen Tang, Haoyue Zhang, Pengxin Yu, Han Kang, Rongguo Zhang
- Abstract要約: 脳腫瘍患者のマルチモーダルOS時間予測法を提案する。
提案手法は,現在の最先端手法に比べて8.76%改善されている。
- 参考スコア(独自算出の注目度): 9.50523454236412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Overall survival (OS) time is one of the most important evaluation indices
for gliomas situations. Multimodal Magnetic Resonance Imaging (MRI) scans play
an important role in the study of glioma prognosis OS time. Several deep
learning-based methods are proposed for the OS time prediction on multi-modal
MRI problems. However, these methods usually fuse multi-modal information at
the beginning or at the end of the deep learning networks and lack the fusion
of features from different scales. In addition, the fusion at the end of
networks always adapts global with global (eg. fully connected after
concatenation of global average pooling output) or local with local (eg.
bilinear pooling), which loses the information of local with global. In this
paper, we propose a novel method for multi-modal OS time prediction of brain
tumor patients, which contains an improved nonlocal features fusion module
introduced on different scales. Our method obtains a relative 8.76% improvement
over the current state-of-art method (0.6989 vs. 0.6426 on accuracy). Extensive
testing demonstrates that our method could adapt to situations with missing
modalities. The code is available at
https://github.com/TangWen920812/mmmna-net.
- Abstract(参考訳): 全身生存時間(OS)はグリオーマの病態に対する最も重要な評価指標の1つである。
マルチモーダルMRI(Multimodal Magnetic Resonance Imaging)スキャンは、グリオーマ予後OSの研究において重要な役割を担っている。
マルチモーダルMRIにおけるOS時間予測のために, 深層学習に基づくいくつかの手法を提案する。
しかし、これらの手法は通常、深層学習ネットワークの開始時や終了時にマルチモーダル情報を融合し、異なるスケールの機能の融合を欠いている。
さらに、ネットワークの終端での融合は常にグローバル(例えば、グローバル平均プーリングアウトプットの結合後に完全に接続された)やローカル(例えば、バイリニアプーリング)に適応し、ローカルとグローバルの情報を失う。
本稿では,脳腫瘍患者に対するマルチモーダルos時間予測法を提案する。
提案手法は,現在の最先端手法(0.6989対0.6426)に比べて8.76%向上した。
広範囲な試験により,本手法はモダリティが欠如している状況に適応できることが示された。
コードはhttps://github.com/tangwen920812/mmmna-netで入手できる。
関連論文リスト
- Fed-MUnet: Multi-modal Federated Unet for Brain Tumor Segmentation [8.757069870788525]
FLトレーニングに適した脳腫瘍セグメンテーション(Fed-MUnet)のための新しい多モードFLフレームワークを提案する。
我々は、BraTS2022データセットを用いて、我々のアプローチを評価した。
論文 参考訳(メタデータ) (2024-09-02T07:55:52Z) - MMIST-ccRCC: A Real World Medical Dataset for the Development of Multi-Modal Systems [12.914295902429]
本稿では,MMIST-CCRCCと呼ばれる実世界のマルチモーダルデータセットを紹介する。
このデータセットは、クリア細胞腎細胞癌(ccRCC)618例の2つの放射線学的モダリティ(CTとMRI)、病理組織学、ゲノム学、臨床データからなる。
このような深刻な欠落率であっても、モダリティの融合は生存予測の改善につながることを示す。
論文 参考訳(メタデータ) (2024-05-02T18:29:05Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Learning Personalized Brain Functional Connectivity of MDD Patients from
Multiple Sites via Federated Bayesian Networks [9.873532358701803]
我々は,複数のベイズネットワークの同時学習のための連合型共同推定器NOTEARS-PFLを提案する。
合成および実世界のマルチサイトRS-fMRIデータセットにおける提案手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-01-06T08:58:06Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
ホワイトマターパーセレーション(White matter parcellation)は、トラクトグラフィーをクラスタまたは解剖学的に意味のあるトラクトに分類する。
ほとんどのパーセレーション法はディープホワイトマター(DWM)にフォーカスするが、その複雑さのため表面ホワイトマター(SWM)に対処する手法は少ない。
本稿では,2段階の深層学習に基づく新しいフレームワークであるSuperficial White Matter Analysis (SupWMA)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:07:53Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Deep Orthogonal Fusion: Multimodal Prognostic Biomarker Discovery
Integrating Radiology, Pathology, Genomic, and Clinical Data [0.32622301272834525]
グリオーマ患者の生存率 (OS) を, 深層直交核融合モデルを用いて予測した。
このモデルは、MRI検査、生検に基づくモダリティ、臨床変数から得た情報を総合的なマルチモーダルリスクスコアに組み合わせることを学ぶ。
グリオーマ患者を臨床的サブセット内でOSにより明らかに層分けし、予後不良な臨床グレーディングと分子サブタイプにさらに粒度を付加する。
論文 参考訳(メタデータ) (2021-07-01T17:59:01Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
生存時間(OS)の早期かつ正確な予測は、脳腫瘍患者に対するより良い治療計画を得るのに役立つ。
既存の予測手法は、磁気共鳴(MR)ボリュームの局所的な病変領域における放射能特性に依存している。
我々は,マルチモーダルマルチチャネルネットワーク(M2Net)のエンドツーエンドOS時間予測モデルを提案する。
論文 参考訳(メタデータ) (2020-06-01T05:21:37Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。