論文の概要: Quantitative performance evaluation of Bayesian neural networks
- arxiv url: http://arxiv.org/abs/2206.06779v1
- Date: Wed, 8 Jun 2022 06:56:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-19 22:46:16.799988
- Title: Quantitative performance evaluation of Bayesian neural networks
- Title(参考訳): ベイズニューラルネットワークの定量的性能評価
- Authors: Brian Staber, S\'ebastien da Veiga
- Abstract要約: ディープラーニングの不確実性に関する訴訟が増えているにもかかわらず、不確実性推定の品質は未解決の問題のままである。
本研究では,サンプリングタスクと回帰タスクにおける複数のアルゴリズムの性能評価を試みる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the growing adoption of deep neural networks in many fields of science
and engineering, modeling and estimating their uncertainties has become of
primary importance. Various approaches have been investigated including
Bayesian neural networks, ensembles, deterministic approximations, amongst
others. Despite the growing litterature about uncertainty quantification in
deep learning, the quality of the uncertainty estimates remains an open
question. In this work, we attempt to assess the performance of several
algorithms on sampling and regression tasks by evaluating the quality of the
confidence regions and how well the generated samples are representative of the
unknown target distribution. Towards this end, several sampling and regression
tasks are considered, and the selected algorithms are compared in terms of
coverage probabilities, kernelized Stein discrepancies, and maximum mean
discrepancies.
- Abstract(参考訳): 深層ニューラルネットワークが科学や工学の多くの分野で採用されているため、その不確かさをモデル化し、推定することが重要になっている。
ベイズニューラルネットワーク、アンサンブル、決定論的近似など様々なアプローチが研究されている。
ディープラーニングにおける不確かさの定量化に関する謎が高まっているにもかかわらず、不確実性推定の質は未解決の問題のままである。
本研究では,信頼領域の品質と生成したサンプルが未知のターゲット分布をどの程度よく表しているかを評価することにより,サンプリングおよび回帰タスクにおける複数のアルゴリズムの性能評価を試みる。
この目的のために、いくつかのサンプリングおよび回帰タスクが検討され、選択されたアルゴリズムは、カバレッジ確率、カーネル化されたスタインの相違、最大平均相違の観点から比較される。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning [71.14237199051276]
経験的リスクを最小限に抑えるため,古典的な分布に依存しないフレームワークとアルゴリズムを検討する。
理想的な安定かつ正確なニューラルネットワークの計算と検証が極めて難しいタスク群が存在することを示す。
論文 参考訳(メタデータ) (2023-09-13T16:33:27Z) - Uncertainty in Natural Language Processing: Sources, Quantification, and
Applications [56.130945359053776]
NLP分野における不確実性関連作業の総合的なレビューを行う。
まず、自然言語の不確実性の原因を、入力、システム、出力の3つのタイプに分類する。
我々は,NLPにおける不確実性推定の課題について論じ,今後の方向性について論じる。
論文 参考訳(メタデータ) (2023-06-05T06:46:53Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - A Survey of Uncertainty in Deep Neural Networks [39.68313590688467]
これは、ニューラルネットワークにおける不確実性推定に関心のある人に、幅広い概要と導入を提供することを目的としている。
最も重要な不確実性源を包括的に紹介し、再現可能なモデル不確実性への分離と、再現可能なデータ不確実性について述べる。
本稿では,ニューラルネットワークのキャリブレーションに対する様々な不確実性,アプローチ,既存のベースラインと実装の概要について論じる。
論文 参考訳(メタデータ) (2021-07-07T16:39:28Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Multivariate Deep Evidential Regression [77.34726150561087]
不確実性を認識するニューラルネットワークによる新しいアプローチは、従来の決定論的手法よりも有望である。
本稿では,レグレッションベースニューラルネットワークからアレータ性およびてんかん性不確かさを抽出する手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T12:20:18Z) - Efficient Variational Inference for Sparse Deep Learning with
Theoretical Guarantee [20.294908538266867]
スパースディープラーニングは、ディープニューラルネットワークによる巨大なストレージ消費の課題に対処することを目的としている。
本稿では,スパイク・アンド・スラブ前処理による完全ベイズ処理により,疎いディープニューラルネットワークを訓練する。
我々はベルヌーイ分布の連続緩和による計算効率の良い変分推論のセットを開発する。
論文 参考訳(メタデータ) (2020-11-15T03:27:54Z) - Uncertainty Quantification in Deep Residual Neural Networks [0.0]
不確かさの定量化は、ディープラーニングにおいて重要で困難な問題である。
以前の方法は、現代のディープアーキテクチャやバッチサイズに敏感なバッチ正規化には存在しないドロップアウト層に依存していた。
本研究では,ニューラルネットワークの後方重みに対する変動近似として,深度を用いた残留ネットワークのトレーニングが可能であることを示す。
論文 参考訳(メタデータ) (2020-07-09T16:05:37Z) - Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling [3.077929914199468]
ニューラルネットワークにおけるドロップアウト層に対するサンプリング分布の変更により,不確実性評価の品質が向上することを示す。
主要なアイデアは、ニューロン間のデータ駆動相関を計算し、最大多様なニューロンを含むサンプルを生成する、という2つの主要なステップで構成されています。
論文 参考訳(メタデータ) (2020-03-06T15:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。