論文の概要: Highly Efficient Structural Learning of Sparse Staged Trees
- arxiv url: http://arxiv.org/abs/2206.06970v1
- Date: Tue, 14 Jun 2022 16:46:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-15 14:29:07.761235
- Title: Highly Efficient Structural Learning of Sparse Staged Trees
- Title(参考訳): スパースステージ樹の高効率構造学習
- Authors: Manuele Leonelli, Gherardo Varando
- Abstract要約: そこで我々は,少数の依存性を課すことができるモデルの空間を探索する,ステージ木のための最初のスケーラブルな構造学習アルゴリズムを提案する。
実世界のアプリケーションと同様にシミュレーション研究は、我々のルーチンと、そのようなデータ学習されたステージツリーの実践的利用を例示している。
- 参考スコア(独自算出の注目度): 2.3572498744567127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several structural learning algorithms for staged tree models, an asymmetric
extension of Bayesian networks, have been defined. However, they do not scale
efficiently as the number of variables considered increases. Here we introduce
the first scalable structural learning algorithm for staged trees, which
searches over a space of models where only a small number of dependencies can
be imposed. A simulation study as well as a real-world application illustrate
our routines and the practical use of such data-learned staged trees.
- Abstract(参考訳): ベイズネットワークの非対称拡張であるステージ木モデルのいくつかの構造学習アルゴリズムが定義されている。
しかし、考慮される変数の数が増加するにつれて、効率よくスケールしない。
ここでは,少数の依存性を課すことができるモデルの空間を探索する,ステージ木のための最初のスケーラブルな構造学習アルゴリズムを紹介する。
実世界のアプリケーションと同様にシミュレーション研究は、我々のルーチンと、そのようなデータ学習されたステージツリーの実践的利用を例示している。
関連論文リスト
- Modern Neighborhood Components Analysis: A Deep Tabular Baseline Two Decades Later [59.88557193062348]
我々は、インスタンス間のセマンティックな類似性をキャプチャする線形射影を学習するために設計された古典的近傍成分分析(NCA)を再考する。
学習目的の調整や深層学習アーキテクチャの統合といった微調整は,NAAの性能を著しく向上させることがわかった。
また,提案したModernNCAの効率性と予測精度を向上する,近隣のサンプリング戦略も導入する。
論文 参考訳(メタデータ) (2024-07-03T16:38:57Z) - Terminating Differentiable Tree Experts [77.2443883991608]
本稿では,変圧器と表現生成器の組み合わせを用いて木操作を学習するニューラルシンボリック微分木機械を提案する。
まず、専門家の混在を導入することで、各ステップで使用される一連の異なるトランスフォーマーレイヤを取り除きます。
また,モデルが自動生成するステップ数を選択するための新しい終端アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-02T08:45:38Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - GrootVL: Tree Topology is All You Need in State Space Model [66.36757400689281]
GrootVLは、視覚的タスクとテキストタスクの両方に適用できる多目的マルチモーダルフレームワークである。
本手法は, 画像分類, オブジェクト検出, セグメンテーションにおいて, 既存の構造化状態空間モデルよりも大幅に優れる。
大規模言語モデルの微調整により,本手法は訓練コストの少ない複数のテキストタスクにおいて一貫した改善を実現する。
論文 参考訳(メタデータ) (2024-06-04T15:09:29Z) - Learning Staged Trees from Incomplete Data [1.6327794667678908]
モデル学習における欠落を処理するステージ木の最初のアルゴリズムについて紹介する。
計算実験では、新しい学習アルゴリズムの性能を示す。
論文 参考訳(メタデータ) (2024-05-28T16:00:23Z) - A generalized decision tree ensemble based on the NeuralNetworks
architecture: Distributed Gradient Boosting Forest (DGBF) [0.0]
本稿では,木間の分散表現学習を自然に行うグラフ構造木アンサンブルアルゴリズムを提案する。
我々は、この新しいアプローチを分散グラディエントブースティングフォレスト(DGBF)と呼び、RandomForestとGradientBoostingの両方がDGBFの特定のグラフアーキテクチャとして表現できることを実証する。
最後に、分散学習は、9つのデータセットのうち7つでRandomForestとGradientBoostingの両方に優れています。
論文 参考訳(メタデータ) (2024-02-04T09:22:52Z) - Structural Learning of Simple Staged Trees [2.3572498744567127]
そこで,本研究では,単純な樹木の分類のための構造学習アルゴリズムについて紹介する。
データ学習された単純な木は、しばしばモデル適合性においてベイズネットワークを上回っていることを示す。
論文 参考訳(メタデータ) (2022-03-08T20:50:39Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z) - The R Package stagedtrees for Structural Learning of Stratified Staged
Trees [1.9199289015460215]
stagedtreesは、データからステージツリーとチェーンイベントグラフの構造を学習するアルゴリズムを含むRパッケージである。
ステージツリーの機能は、主にパッケージに含まれるかRにバンドルされた2つのデータセットを使用して説明される。
論文 参考訳(メタデータ) (2020-04-14T13:02:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。