Tearing Apart NOTEARS: Controlling the Graph Prediction via Variance
Manipulation
- URL: http://arxiv.org/abs/2206.07195v1
- Date: Tue, 14 Jun 2022 22:53:05 GMT
- Title: Tearing Apart NOTEARS: Controlling the Graph Prediction via Variance
Manipulation
- Authors: Jonas Seng and Matej Ze\v{c}evi\'c and Devendra Singh Dhami and
Kristian Kersting
- Abstract summary: We show that we can control the resulting graph with our targeted variance attacks.
In particular, we show that we can control the resulting graph with our targeted variance attacks.
- Score: 17.103787431518683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulations are ubiquitous in machine learning. Especially in graph learning,
simulations of Directed Acyclic Graphs (DAG) are being deployed for evaluating
new algorithms. In the literature, it was recently argued that
continuous-optimization approaches to structure discovery such as NOTEARS might
be exploiting the sortability of the variable's variances in the available data
due to their use of least square losses. Specifically, since structure
discovery is a key problem in science and beyond, we want to be invariant to
the scale being used for measuring our data (e.g. meter versus centimeter
should not affect the causal direction inferred by the algorithm). In this
work, we further strengthen this initial, negative empirical suggestion by both
proving key results in the multivariate case and corroborating with further
empirical evidence. In particular, we show that we can control the resulting
graph with our targeted variance attacks, even in the case where we can only
partially manipulate the variances of the data.
Related papers
- diffIRM: A Diffusion-Augmented Invariant Risk Minimization Framework for Spatiotemporal Prediction over Graphs [6.677219861416146]
Intemporal prediction over graphs (GSTP) is challenging, because real-world data suffers from the Out-of-Distribution (OOD) problem.
In this study, we propose a diffusion-augmented invariant risk minimization (diffIRM) framework that combines these two principles.
arXiv Detail & Related papers (2024-12-31T06:45:47Z) - Sample Efficient Bayesian Learning of Causal Graphs from Interventions [6.823521786512908]
This study considers a Bayesian approach for learning causal graphs with limited interventional samples.
We show theoretically that our proposed algorithm will return the true causal graph with high probability.
We present a case study showing how this algorithm could be modified to answer more general causal questions without learning the whole graph.
arXiv Detail & Related papers (2024-10-26T05:47:56Z) - Scalable and Flexible Causal Discovery with an Efficient Test for Adjacency [48.769884734826974]
We build a scalable and flexible method to evaluate if two variables are adjacent in a causal graph.
The Differentiable Adjacency Test replaces an exponential number of tests with a provably equivalent relaxed problem.
We also build a graph learning method based on DAT, DAT-Graph, that can also learn from data with interventions.
arXiv Detail & Related papers (2024-06-13T14:39:40Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
We train a supervised model that learns to predict a larger causal graph from the outputs of classical causal discovery algorithms run over subsets of variables.
Our approach is enabled by the observation that typical errors in the outputs of classical methods remain comparable across datasets.
Experiments on real and synthetic data demonstrate that this model maintains high accuracy in the face of misspecification or distribution shift.
arXiv Detail & Related papers (2024-02-02T21:57:58Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
Causal discovery from observational data is an important tool in many branches of science.
In the large sample limit, sound and complete causal discovery algorithms have been previously introduced.
However, only finite training data is available, which limits the power of statistical tests used by these algorithms.
arXiv Detail & Related papers (2021-07-11T09:24:49Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - What causes the test error? Going beyond bias-variance via ANOVA [21.359033212191218]
Modern machine learning methods are often overparametrized, allowing adaptation to the data at a fine level.
Recent work aimed to understand in greater depth why overparametrization is helpful for generalization.
We propose using the analysis of variance (ANOVA) to decompose the variance in the test error in a symmetric way.
arXiv Detail & Related papers (2020-10-11T05:21:13Z) - Meta Learning for Causal Direction [29.00522306460408]
We introduce a novel generative model that allows distinguishing cause and effect in the small data setting.
We demonstrate our method on various synthetic as well as real-world data and show that it is able to maintain high accuracy in detecting directions across varying dataset sizes.
arXiv Detail & Related papers (2020-07-06T15:12:05Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.