論文の概要: AI and Pathology: Steering Treatment and Predicting Outcomes
- arxiv url: http://arxiv.org/abs/2206.07573v1
- Date: Wed, 15 Jun 2022 14:55:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 21:26:38.617532
- Title: AI and Pathology: Steering Treatment and Predicting Outcomes
- Title(参考訳): aiと病理 - ステアリング治療とアウトカム予測
- Authors: Rajarsi Gupta, Jakub Kaczmarzyk, Soma Kobayashi, Tahsin Kurc, Joel
Saltz
- Abstract要約: 組織解釈に関するアプリケーション課題の豊富なセットと、AI手法の調査について述べる。
本研究は, 疾患状態の定量的評価, 患者の予後予測, 治療ステアリングを目的とした, 特定の種類のヒト組織分析, 病理組織学に焦点を当てた。
- 参考スコア(独自算出の注目度): 1.365100962983716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The combination of data analysis methods, increasing computing capacity, and
improved sensors enable quantitative granular, multi-scale, cell-based
analyses. We describe the rich set of application challenges related to tissue
interpretation and survey AI methods currently used to address these
challenges. We focus on a particular class of targeted human tissue analysis -
histopathology - aimed at quantitative characterization of disease state,
patient outcome prediction and treatment steering.
- Abstract(参考訳): データ解析手法の組み合わせ、計算能力の向上、センサの改良により、定量的な粒度、マルチスケール、セルベース分析が可能になる。
組織解釈に関連するアプリケーション課題の豊富なセットと、これらの課題に現在取り組んでいるAI手法について説明する。
我々は, 疾患状態, 予後予測, 治療ステアリングの定量的評価を目的とした, 特定の分類のヒト組織分析の病理組織学に焦点を当てた。
関連論文リスト
- The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
本研究では、時系列医療指標における心拍データの伝達を改善するための機械学習アルゴリズムの能力について検討する。
検討中の要因は、アルゴリズムの利用、対象とする疾患の種類、採用されるデータの種類、応用、評価指標などである。
論文 参考訳(メタデータ) (2023-10-25T20:28:22Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
我々は,データのバランスが不均衡でサンプルサイズが小さい場合に,より正確な予測を行うために,データのバランスと拡張のための方法論を開発する。
実験の結果,提案手法の平均精度は95.36であり,ランダムフォレスト(RF),決定木(DT),サポートベクターマシン(SVM),ロジスティック回帰(LR),人工ニューラルネットワーク(ANN)よりも高かった。
論文 参考訳(メタデータ) (2023-08-29T14:33:38Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - SHAMSUL: Systematic Holistic Analysis to investigate Medical
Significance Utilizing Local interpretability methods in deep learning for
chest radiography pathology prediction [1.0138723409205497]
局所的解釈可能なモデル非依存説明法(LIME)、共有付加的説明法(SHAP)、グラディエント重み付きクラス活性化マッピング(Grad-CAM)、レイヤワイド関連伝搬法(LRP)の4つの方法の適用について検討した。
本分析では, 単一ラベルと多ラベルの予測を両方含み, 定量的, 定性的な調査を通じて包括的かつ不偏な評価を行い, 人的専門家のアノテーションと比較した。
論文 参考訳(メタデータ) (2023-07-16T11:10:35Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Towards Launching AI Algorithms for Cellular Pathology into Clinical &
Pharmaceutical Orbits [1.7149364927872013]
計算病理学(CPath、Computational Pathology)は、組織病理学の分野である。
CPathにおける近年の深層学習に基づく研究は, 画像の生画像の高容量化に成功している。
論文 参考訳(メタデータ) (2021-12-17T13:05:16Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - A survey of statistical learning techniques as applied to inexpensive
pediatric Obstructive Sleep Apnea data [3.1373682691616787]
閉塞性睡眠時無呼吸は小学生の1-5%に影響を及ぼす。
スウィフトの診断と治療は、子供の成長と発達にとって重要であるが、症状の多様性と利用可能なデータの複雑さは、これを困難にしている。
探索データ解析のプロセスにおいて,相関ネットワーク,トポロジカルデータ解析からのMapperアルゴリズム,特異値分解を適用した。
論文 参考訳(メタデータ) (2020-02-17T18:15:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。