論文の概要: Evaluating object detector ensembles for improving the robustness of
artifact detection in endoscopic video streams
- arxiv url: http://arxiv.org/abs/2206.07580v1
- Date: Wed, 15 Jun 2022 15:06:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 21:02:49.129938
- Title: Evaluating object detector ensembles for improving the robustness of
artifact detection in endoscopic video streams
- Title(参考訳): 内視鏡映像ストリームにおける物体検出アンサンブルの評価とアーチファクト検出の堅牢性向上
- Authors: Pedro Esteban Chavarrias-Solano, Carlos Axel Garcia-Vega, Francisco
Javier Lopez-Tiro, Gilberto Ochoa-Ruiz, Thomas Bazin, Dominique Lamarque,
Christian Daul
- Abstract要約: アンサンブル深層学習法を用いて2つの単段検出器の予測を合成する。
このアンサンブル戦略により、個々のモデルの堅牢性は、リアルタイムの能力を損なうことなく向上できるようになりました。
- 参考スコア(独自算出の注目度): 0.9236074230806579
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this contribution we use an ensemble deep-learning method for combining
the prediction of two individual one-stage detectors (i.e., YOLOv4 and Yolact)
with the aim to detect artefacts in endoscopic images. This ensemble strategy
enabled us to improve the robustness of the individual models without harming
their real-time computation capabilities. We demonstrated the effectiveness of
our approach by training and testing the two individual models and various
ensemble configurations on the "Endoscopic Artifact Detection Challenge"
dataset. Extensive experiments show the superiority, in terms of mean average
precision, of the ensemble approach over the individual models and previous
works in the state of the art.
- Abstract(参考訳): このコントリビューションでは、2つの個別の1段階検出器(YOLOv4とYolact)の予測と、内視鏡画像の人工物検出を併用するアンサンブル深層学習法を用いている。
このアンサンブル戦略により,実時間計算能力を損なうことなく,個々のモデルのロバスト性を向上させることができた。
本手法は,2つの個別モデルと各種アンサンブル構成を訓練・テストし,"endoscopic artifact detection challenge"データセット上での有効性を実証した。
広範な実験により、平均精度の観点からは、個々のモデルや以前の作品に対するアンサンブルアプローチの優越性が示される。
関連論文リスト
- On the Inherent Robustness of One-Stage Object Detection against Out-of-Distribution Data [6.7236795813629]
画像データ中の未知物体を検出する新しい検出アルゴリズムを提案する。
モデルによって抽出された特徴に対する次元の呪いの影響を軽減するために、教師付き次元削減技術を利用する。
これは高解像度の特徴マップを用いて、教師なしの方法で潜在的に未知の物体を識別する。
論文 参考訳(メタデータ) (2024-11-07T10:15:25Z) - Evaluating the Effectiveness of Attack-Agnostic Features for Morphing Attack Detection [20.67964977754179]
モーフィング攻撃検出(MAD)における画像表現の可能性について検討する。
ガウス混合モデル(GMM)によるボナフィド特性の分布をモデル化し,抽出した特徴量と一級検出値に基づいて単純な2次線形SVMを訓練し,教師付き検出器を開発する。
以上の結果から,攻撃非依存の特徴は,ほとんどのシナリオにおいて従来の教師付き・一級検知器よりも優れた形態的攻撃を効果的に検出できることが示唆された。
論文 参考訳(メタデータ) (2024-10-22T08:27:43Z) - Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging [8.819370643243012]
Coded Aperture Snapshot Spectral Imaging (CASSI)は3次元マルチスペクトル画像(MSI)を撮影するための重要な技術である
現在の最先端の手法は、主にエンドツーエンドであり、高周波の詳細を再構築する際の制限に直面している。
本稿では,Snapshot Compressive Imagingのための自己教師型適応フレームワークにおいて,新しい1段階拡散確率モデルを提案する。
論文 参考訳(メタデータ) (2024-09-11T17:02:10Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Robust Training of Federated Models with Extremely Label Deficiency [84.00832527512148]
フェデレーション半教師付き学習(FSSL)は、ラベル不足を伴う分散データを用いて機械学習モデルを協調訓練するための強力なパラダイムとして登場した。
我々は,ラベル付きおよびラベルなしデータの異なる視点から洞察を提供することにより相互指導を強化するために,ツインサイトと呼ばれる新しいツインモデルパラダイムを提案する。
4つのベンチマークデータセットに関する包括的な実験は、Twin-sightが様々な実験環境において最先端の手法を著しく上回っていることを示す重要な証拠となる。
論文 参考訳(メタデータ) (2024-02-22T10:19:34Z) - Adversarial Augmentation Training Makes Action Recognition Models More
Robust to Realistic Video Distribution Shifts [13.752169303624147]
アクション認識モデルは、トレーニングデータとテストデータの間の自然な分散シフトに直面したとき、堅牢性を欠くことが多い。
そこで本研究では,そのような分布格差に対するモデルレジリエンスを評価するための2つの新しい評価手法を提案する。
提案手法は,3つの動作認識モデルにまたがるベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-21T05:50:39Z) - Fast and Expressive Gesture Recognition using a Combination-Homomorphic
Electromyogram Encoder [21.25126610043744]
筋電図を用いたジェスチャー認識の課題について検討する。
方向成分と変調器成分を組み合わせたジェスチャーを定義する。
新しい被験者は単一のコンポーネントジェスチャしか示さない。
実際の単一のジェスチャーの特徴ベクトルを組み合わせて合成学習データを生成することで、見知らぬ組み合わせのジェスチャーに外挿する。
論文 参考訳(メタデータ) (2023-10-30T20:03:34Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
本稿では,適応オブジェクト検出のための新しいエンド・ツー・エンドの非教師付き深部ドメイン適応モデルを提案する。
モデルはマルチラベル予測を利用して、各画像内の対象カテゴリ情報を明らかにする。
本稿では,オブジェクト検出を支援するための予測整合正則化機構を提案する。
論文 参考訳(メタデータ) (2020-03-29T04:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。