論文の概要: When to intervene? Prescriptive Process Monitoring Under Uncertainty and
Resource Constraints
- arxiv url: http://arxiv.org/abs/2206.07745v1
- Date: Wed, 15 Jun 2022 18:18:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-18 21:29:46.836028
- Title: When to intervene? Prescriptive Process Monitoring Under Uncertainty and
Resource Constraints
- Title(参考訳): いつ介入するか?
不確実性と資源制約下における規範的プロセス監視
- Authors: Mahmoud Shoush, Marlon Dumas
- Abstract要約: 規範的なプロセス監視アプローチは、過去のデータを活用して実行時の介入を規定する。
この分野での以前の提案は、与えられたケースの現在の状態のみを考慮した介入ポリシーに依存している。
本稿では,予測スコア,予測の不確実性,介入の因果効果に基づいて進行中の事例をフィルタリング・ランク付けし,利得関数を最大化するために介入をトリガーする規範的プロセス監視手法を導入することにより,これらのギャップに対処する。
- 参考スコア(独自算出の注目度): 0.7487718119544158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prescriptive process monitoring approaches leverage historical data to
prescribe runtime interventions that will likely prevent negative case outcomes
or improve a process's performance. A centerpiece of a prescriptive process
monitoring method is its intervention policy: a decision function determining
if and when to trigger an intervention on an ongoing case. Previous proposals
in this field rely on intervention policies that consider only the current
state of a given case. These approaches do not consider the tradeoff between
triggering an intervention in the current state, given the level of uncertainty
of the underlying predictive models, versus delaying the intervention to a
later state. Moreover, they assume that a resource is always available to
perform an intervention (infinite capacity). This paper addresses these gaps by
introducing a prescriptive process monitoring method that filters and ranks
ongoing cases based on prediction scores, prediction uncertainty, and causal
effect of the intervention, and triggers interventions to maximize a gain
function, considering the available resources. The proposal is evaluated using
a real-life event log. The results show that the proposed method outperforms
existing baselines regarding total gain.
- Abstract(参考訳): 規範的プロセス監視アプローチは、過去のデータを利用して、負のケースアウトプットを防止したり、プロセスのパフォーマンスを改善する可能性のあるランタイム介入を規定する。
規範的プロセス監視手法の中心は、その介入方針である:進行中のケースで介入をトリガーするかどうかと時期を決定する決定関数。
この分野での以前の提案は、あるケースの現在の状態のみを考慮する介入ポリシーに依存している。
これらのアプローチは、基礎となる予測モデルの不確実性レベルと、後続状態への介入を遅らせるレベルを考えると、現在の状態への介入の引き金となるトレードオフを考慮しない。
さらに、リソースは常に介入(無限の能力)を実行するために利用できると仮定する。
本稿では,予測スコア,予測不確実性,介入の因果効果に基づいて進行中の事例をフィルタリング・ランク付けする規範的プロセス監視手法を導入し,利用可能な資源を考慮した利得関数を最大化するために介入をトリガーする。
この提案は実際のイベントログを用いて評価される。
その結果,提案手法は総利得に関する既存のベースラインを上回っていることがわかった。
関連論文リスト
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - Conformal Counterfactual Inference under Hidden Confounding [19.190396053530417]
反ファクトの世界における潜在的な結果の予測と不確実性は、因果推論における因果的問題を引き起こす。
反事実に対する信頼区間を構成する既存の方法は、強い無知の仮定に依存する。
提案手法は, 限界収束保証付き実測結果に対する信頼区間を提供するトランスダクティブ重み付き共形予測に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-20T21:43:43Z) - Prescriptive Process Monitoring Under Resource Constraints: A
Reinforcement Learning Approach [0.3807314298073301]
強化学習は、試行錯誤を通じて介入政策を学ぶためのアプローチとして提案されている。
この領域における既存のアプローチは、プロセスの介入を行うのに利用可能なリソースの数が無制限であると仮定する。
本稿では、資源制約の存在下では、規範的プロセス監視の分野における重要なジレンマは、その必要性、スケジュール、効果の予測だけでなく、これらの予測の不確実性や資源利用のレベルにも基づく介入をトリガーすることである、と論じる。
論文 参考訳(メタデータ) (2023-07-13T05:31:40Z) - Intervening With Confidence: Conformal Prescriptive Monitoring of
Business Processes [0.7487718119544158]
本稿では,既存の規範的プロセス監視手法を信頼性保証付き予測で拡張する手法を提案する。
実生活の公開データセットを用いた実証評価では、コンフォメーション予測は限られたリソース下での規範的プロセス監視手法の純利を高めることが示されている。
論文 参考訳(メタデータ) (2022-12-07T15:29:21Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
我々は,古典的非干渉仮説の違反を考える。つまり,ある個人に対する治療が他者の結果に影響を及ぼす可能性がある。
干渉をトラクタブルにするために、干渉がどのように進行するかを記述する既知のネットワークを考える。
このような環境下での処理に対する平均的直接的処理効果の予測について検討した。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Causal Modeling of Policy Interventions From Sequences of Treatments and
Outcomes [5.107614397012659]
データ駆動意思決定は、ポリシーが変更されたときに何が起こるかを予測する能力を必要とする。
結果がどのように進化するかを予測する既存の方法は、将来の治療の仮のシーケンスが事前に固定されていると仮定する。
実際には、治療は政策によって決定され、以前の治療の効率に依存する可能性がある。
論文 参考訳(メタデータ) (2022-09-09T06:50:37Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
本稿では、今後の介入に関するモデルの仮定を明確に伝達する手段として、介入政策と有害事象リスクの合同モデルを提案する。
死亡確率などの典型的なリスクスコアと将来の介入確率スコアとを組み合わせることで、より解釈可能な臨床予測がもたらされることを示す。
論文 参考訳(メタデータ) (2022-07-06T19:49:42Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
本論文はシステム文献レビュー(SLR)を通して,本分野における既存手法について考察する。
SLRは今後の研究の課題や分野に関する洞察を提供し、規範的なプロセス監視手法の有用性と適用性を高めることができる。
論文 参考訳(メタデータ) (2021-12-03T08:06:24Z) - Prescriptive Process Monitoring Under Resource Constraints: A Causal
Inference Approach [0.9645196221785693]
既存の規範的なプロセス監視技術は、トリガーされる可能性のある介入の数が無制限であると仮定する。
本稿では,固定資源制約下でのコスト関数を最適化するために介入をトリガーする規範的プロセス監視手法を提案する。
論文 参考訳(メタデータ) (2021-09-07T06:42:33Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。