論文の概要: Strategic Coalition for Data Pricing in IoT Data Markets
- arxiv url: http://arxiv.org/abs/2206.07785v4
- Date: Tue, 29 Aug 2023 12:19:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 19:17:37.202169
- Title: Strategic Coalition for Data Pricing in IoT Data Markets
- Title(参考訳): IoTデータ市場におけるデータ価格の戦略的協調
- Authors: Shashi Raj Pandey, Pierre Pinson, Petar Popovski
- Abstract要約: 本稿では、機械学習モデルのトレーニングに使用されるIoT(Internet of Things)データのトレーディング市場について考察する。
データはネットワークを介して市場プラットフォームに供給され、そのようなデータの価格が機械学習モデルにもたらす価値に基づいて制御される。
- 参考スコア(独自算出の注目度): 32.38170282930876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers a market for trading Internet of Things (IoT) data that
is used to train machine learning models. The data, either raw or processed, is
supplied to the market platform through a network and the price of such data is
controlled based on the value it brings to the machine learning model. We
explore the correlation property of data in a game-theoretical setting to
eventually derive a simplified distributed solution for a data trading
mechanism that emphasizes the mutual benefit of devices and the market. The key
proposal is an efficient algorithm for markets that jointly addresses the
challenges of availability and heterogeneity in participation, as well as the
transfer of trust and the economic value of data exchange in IoT networks. The
proposed approach establishes the data market by reinforcing collaboration
opportunities between device with correlated data to avoid information leakage.
Therein, we develop a network-wide optimization problem that maximizes the
social value of coalition among the IoT devices of similar data types; at the
same time, it minimizes the cost due to network externalities, i.e., the impact
of information leakage due to data correlation, as well as the opportunity
costs. Finally, we reveal the structure of the formulated problem as a
distributed coalition game and solve it following the simplified
split-and-merge algorithm. Simulation results show the efficacy of our proposed
mechanism design toward a trusted IoT data market, with up to 32.72% gain in
the average payoff for each seller.
- Abstract(参考訳): 本稿では、機械学習モデルのトレーニングに使用されるIoT(Internet of Things)データのトレーディング市場について考察する。
生または処理されたデータは、ネットワークを介して市場プラットフォームに供給され、そのようなデータの価格が機械学習モデルにもたらす価値に基づいて制御される。
ゲーム理論におけるデータの相関性について検討し、最終的にはデバイスと市場の相互利益を強調するデータトレーディング機構のための簡易分散ソリューションを導出する。
鍵となる提案は、IoTネットワークにおける信頼の移転とデータ交換の経済的価値に加えて、参加の可用性と不均一性の課題を共同で解決する、市場のための効率的なアルゴリズムである。
提案手法は,情報漏洩を回避するためにデバイス間の協調機会を強化することで,データ市場を確立する。
そこで、類似したデータ型を持つiotデバイス間の結合の社会的価値を最大化するネットワーク全体の最適化問題を開発し、同時に、ネットワーク外部性によるコスト、すなわちデータ相関による情報漏洩の影響や機会コストを最小化する。
最後に,定式化問題の構造を分散連立ゲームとして明らかにし,単純化した分割・マージアルゴリズムにより解いた。
シミュレーションの結果,信頼されたIoTデータ市場に向けたメカニズム設計の有効性が示され,各販売者の平均支払額は最大32.72%増加した。
関連論文リスト
- A Survey on Data Markets [73.07800441775814]
より大きな福祉のためのトレーディングデータの増加は、データ市場の台頭につながっている。
データ市場とは、データセットやデータデリバティブを含むデータプロダクトの交換が行われるメカニズムである。
これは、価格やデータの分散など、いくつかの機能が相互作用するコーディネートメカニズムとして機能する。
論文 参考訳(メタデータ) (2024-11-09T15:09:24Z) - Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand [57.82021900505197]
インターネット・オブ・ビークルズ(IoV)は、道路の安全性を高め、交通渋滞を軽減し、インフォテインメントアプリケーションを通じてユーザーエクスペリエンスを向上させることにより、交通システムを変革する大きな可能性を秘めている。
分散データ共有は、セキュリティ、プライバシ、信頼性を改善し、IoVにおけるインフォテインメントデータの共有を容易にする。
市場における需給バランスを学習するための多知能強化学習に基づく分散型データ共有インセンティブ機構を提案する。
論文 参考訳(メタデータ) (2024-03-29T14:58:28Z) - DAVED: Data Acquisition via Experimental Design for Data Markets [25.300193837833426]
本稿では,線形実験設計にインスパイアされたデータ取得問題に対するフェデレートされたアプローチを提案する。
提案手法はラベル付き検証データを必要とせずに予測誤差を低くする。
我々の研究の重要な洞察は、テストセット予測のためのデータ取得の利点を直接見積もる手法が、特に分散市場設定と互換性があることである。
論文 参考訳(メタデータ) (2024-03-20T18:05:52Z) - Privacy-Aware Data Acquisition under Data Similarity in Regression Markets [29.64195175524365]
データの類似性とプライバシの嗜好が市場設計に不可欠であることを示す。
我々は、データ類似性が市場参加や取引データの価値にどのように影響するかを数値的に評価する。
論文 参考訳(メタデータ) (2023-12-05T09:39:04Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
まず、現在のデータマーケットプレースを調査し、データセットに関する詳細な情報を提供するプラットフォームが不足していることを明らかにする。
次に、データプロバイダと取得者間のインタラクションをモデル化するベンチマークであるDAMチャレンジを紹介します。
提案手法の評価は,機械学習における効果的なデータ取得戦略の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-22T22:15:17Z) - Addressing Budget Allocation and Revenue Allocation in Data Market
Environments Using an Adaptive Sampling Algorithm [14.206050847214652]
本稿では,予算配分と収益配分を同時に線形時間で解く新しいアルゴリズムを提案する。
新しいアルゴリズムでは、モデルに最も貢献しているプロバイダからデータを選択するアダプティブサンプリングプロセスを採用している。
予算を効率的に利用し,収益配分特性がShapleyに類似していることを示すアルゴリズムを理論的に保証する。
論文 参考訳(メタデータ) (2023-06-05T02:28:19Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
本稿では,2つの制限を緩和する半教師付き分割蒸留フレームワーク VFed-SSD を提案する。
具体的には,垂直分割された未ラベルデータを利用する自己教師型タスクMatchedPair Detection (MPD) を開発する。
当社のフレームワークは,デプロイコストの最小化と大幅なパフォーマンス向上を図った,リアルタイム表示広告のための効率的なフェデレーション強化ソリューションを提供する。
論文 参考訳(メタデータ) (2022-05-31T17:45:30Z) - Data Sharing Markets [95.13209326119153]
我々は、各エージェントがデータの買い手および売り手の両方になり得る設定について検討する。
両データ交換(データ付きトレーディングデータ)と一方データ交換(お金付きトレーディングデータ)の2つの事例を考察する。
論文 参考訳(メタデータ) (2021-07-19T06:00:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。