論文の概要: Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand
- arxiv url: http://arxiv.org/abs/2403.20218v1
- Date: Fri, 29 Mar 2024 14:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:24:49.795427
- Title: Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand
- Title(参考訳): IoVにおける分散マルチメディアデータ共有 : 学習に基づく需給均衡
- Authors: Jiani Fan, Minrui Xu, Jiale Guo, Lwin Khin Shar, Jiawen Kang, Dusit Niyato, Kwok-Yan Lam,
- Abstract要約: インターネット・オブ・ビークルズ(IoV)は、道路の安全性を高め、交通渋滞を軽減し、インフォテインメントアプリケーションを通じてユーザーエクスペリエンスを向上させることにより、交通システムを変革する大きな可能性を秘めている。
分散データ共有は、セキュリティ、プライバシ、信頼性を改善し、IoVにおけるインフォテインメントデータの共有を容易にする。
市場における需給バランスを学習するための多知能強化学習に基づく分散型データ共有インセンティブ機構を提案する。
- 参考スコア(独自算出の注目度): 57.82021900505197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet of Vehicles (IoV) has great potential to transform transportation systems by enhancing road safety, reducing traffic congestion, and improving user experience through onboard infotainment applications. Decentralized data sharing can improve security, privacy, reliability, and facilitate infotainment data sharing in IoVs. However, decentralized data sharing may not achieve the expected efficiency if there are IoV users who only want to consume the shared data but are not willing to contribute their own data to the community, resulting in incomplete information observed by other vehicles and infrastructure, which can introduce additional transmission latency. Therefore, in this article, by modeling the data sharing ecosystem as a data trading market, we propose a decentralized data-sharing incentive mechanism based on multi-intelligent reinforcement learning to learn the supply-demand balance in markets and minimize transmission latency. Our proposed mechanism takes into account the dynamic nature of IoV markets, which can experience frequent fluctuations in supply and demand. We propose a time-sensitive Key-Policy Attribute-Based Encryption (KP-ABE) mechanism coupled with Named Data Networking (NDN) to protect data in IoVs, which adds a layer of security to our proposed solution. Additionally, we design a decentralized market for efficient data sharing in IoVs, where continuous double auctions are adopted. The proposed mechanism based on multi-agent deep reinforcement learning can learn the supply-demand equilibrium in markets, thus improving the efficiency and sustainability of markets. Theoretical analysis and experimental results show that our proposed learning-based incentive mechanism outperforms baselines by 10% in determining the equilibrium of supply and demand while reducing transmission latency by 20%.
- Abstract(参考訳): インターネット・オブ・ビークルズ(IoV)は、道路の安全性を高め、交通渋滞を軽減し、インフォテインメントアプリケーションを通じてユーザーエクスペリエンスを向上させることにより、交通システムを変革する大きな可能性を秘めている。
分散データ共有は、セキュリティ、プライバシ、信頼性を改善し、IoVにおけるインフォテインメントデータの共有を容易にする。
しかし、分散化されたデータ共有は、共有データを消費するだけでなく、コミュニティにデータを提供したくないIoVユーザーがいれば、期待される効率を達成できない可能性がある。
そこで本稿では、データ共有エコシステムをデータ取引市場としてモデル化することにより、マルチインテリジェント強化学習に基づく分散データ共有インセンティブ機構を提案し、市場における需給バランスを学習し、送信遅延を最小限にする。
提案手法は、供給と需要の頻繁な変動を経験できるIoV市場のダイナミックな性質を考慮したものである。
我々は、IoV内のデータを保護するために、名前付きデータネットワーク(NDN)と組み合わせたKP-ABE(Key-Policy Attribute-Based Encryption)機構を提案する。
さらに、IoVにおける効率的なデータ共有のための分散市場を設計し、継続的な二重オークションを採用する。
提案手法は,市場における需給均衡を学習し,市場の効率性と持続可能性を向上させる。
理論的解析と実験結果から,提案した学習に基づくインセンティブ機構は,送電遅延を20%低減しつつ,供給と需要の均衡を判断する上で,ベースラインを10%向上させることが示された。
関連論文リスト
- Decentralized Intelligence Network (DIN) [0.0]
分散インテリジェンスネットワーク(Decentralized Intelligence Network, DIN)は、AI開発における課題に対処するために設計された理論フレームワークである。
このフレームワークは、参加者がデータのコントロールを維持し、金銭的に利益を享受し、分散型でスケーラブルなエコシステムに貢献できるようにすることで、効果的なAIトレーニングをサポートする。
論文 参考訳(メタデータ) (2024-07-02T17:40:06Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
IoVネットワークにおけるインフォテインメントデータ通信の安全性の欠如は、社会的エンジニアリング攻撃の容易なアクセスポイントを意図せずに開放することができる。
特に、まずIoVネットワークでデータ通信を分類し、各データ通信のセキュリティ焦点を調べ、その後、ファイル間通信でセキュリティ保護を提供するための異なるセキュリティアーキテクチャを開発する。
論文 参考訳(メタデータ) (2024-03-29T12:01:31Z) - Enhancing IoT Security Against DDoS Attacks through Federated Learning [0.0]
IoT(Internet of Things)は、物理デバイスとデジタル領域の間の変換接続を基盤としている。
従来のDDoS緩和アプローチは、IoTエコシステムの複雑さを扱うには不十分である。
本稿では、フェデレートラーニングの力を活用して、IoTネットワークのDDoS攻撃に対するセキュリティを強化する革新的な戦略を紹介する。
論文 参考訳(メタデータ) (2024-03-16T16:45:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Blockchain Solution for Collaborative Machine Learning over IoT [0.31410859223862103]
フェデレートラーニング(FL)とブロックチェーン技術は、これらの課題に対処するための有望なアプローチとして現れています。
我々は、漸進学習ベクトル量子化アルゴリズム(XuILVQ)とブロックチェーン技術を組み合わせた、新しいIoTソリューションを提案する。
提案アーキテクチャは,データプライバシとセキュリティを維持しながら,計算オーバーヘッドと通信オーバーヘッドを削減することにより,既存のブロックチェーンベースのFLソリューションの欠点に対処する。
論文 参考訳(メタデータ) (2023-11-23T18:06:05Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Strategic Coalition for Data Pricing in IoT Data Markets [32.38170282930876]
本稿では、機械学習モデルのトレーニングに使用されるIoT(Internet of Things)データのトレーディング市場について考察する。
データはネットワークを介して市場プラットフォームに供給され、そのようなデータの価格が機械学習モデルにもたらす価値に基づいて制御される。
論文 参考訳(メタデータ) (2022-06-15T19:48:10Z) - Blockchain-Based Federated Learning in Mobile Edge Networks with
Application in Internet of Vehicles [7.038557568936009]
プライバシーに関する懸念は、データプロバイダが従来のIoVネットワークでプライベートデータを共有するための大きなボトルネックです。
本稿では,モバイルエッジコンピューティング(MEC)技術がIoVシステムに自然に統合された,自律型ブロックチェーンによるプライバシ保護FLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-01T16:38:40Z) - Local Differential Privacy based Federated Learning for Internet of
Things [72.83684013377433]
Internet of Vehicles (IoV)は、Waze、Uber、Amazon Mechanical Turkなど、さまざまなクラウドソーシングアプリケーションをシミュレートする。
これらのアプリケーションのユーザは、ユーザの報告したトラフィック情報に基づいて機械学習モデルをトレーニングするクラウドサーバに、リアルタイムのトラフィック情報を報告する。
本稿では,機械学習モデルを実現するためのクラウドソーシングアプリケーションを容易にするために,フェデレーション学習とローカルディファレンシャルプライバシ(LDP)を統合することを提案する。
論文 参考訳(メタデータ) (2020-04-19T14:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。